Advances in plant nutrition diagnosis based on remote sensing and computer application

  • Deyu Feng
  • Weihong XuEmail author
  • Zhangmi He
  • Wanyi Zhao
  • Mei Yang
Smart Data Aggregation Inspired Paradigm & Approaches in IoT Applns


Hyperspectral remote sensing, visible light remote sensing and canopy color analysis have been widely concerned for rapid diagnosis of crop growth and nutrition. They are expected to develop into potential nondestructive diagnostic techniques for crop nitrogen nutrition in the new era on account of the advantages of stable, rapid, convenient and nondestructive results, together with the good correlation between canopy color parameter NRI and plant nitrogen nutrition index and yield satisfying the demand for nondestructive diagnosis of nitrogen nutrition, and their feasibility to monitor plant growth status and nitrogen nutrition level in real time and quickly. At present, with the rapid development of remote sensing satellite, unmanned aerial vehicles remote sensing and Internet of things, remote sensing will be more and more widely used in plant nutrition diagnosis.


Plant nutrition diagnosis Hyperspectral Canopy color Satellite remote sensing UAV 



This work was supported by the Fund of China Agriculture Research System (CARS-23) and the National Key Research and Development Program of China (2018YFD0201200).


  1. 1.
    Thomas JR, Gausman HW (1977) Leaf reflectance vs. leaf chlorophyll and carotenoid concentration for eight crops. Agron J 69:799CrossRefGoogle Scholar
  2. 2.
    Jiao Q, Zhang B, Liu J, Liu L (2014) A novel two-step method for winter wheat-leaf chlorophyll content estimation using a hyperspectral vegetation index. Int J Remote Sens 35(21):7363–7375CrossRefGoogle Scholar
  3. 3.
    Shibayama M, Akiyama T (1986) A spectroradiometer for field use IV. Radiometric estimation for chlorophyll index of rice canopy. Jpn J Crop Sci 55(4):433CrossRefGoogle Scholar
  4. 4.
    Liu H, Zhu H, Wang P (2017) Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data. Int J Remote Sens 38(8–10):2117–2134CrossRefGoogle Scholar
  5. 5.
    Li JW, Zhang F, Qian XY, Zhu YH, Shen GX (2015) Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle. Remote Sens Lett 6(3):183–189CrossRefGoogle Scholar
  6. 6.
    Gabriel JL, Zarco-Tejada PJ, López-Herrer PJ, Pérez-Martín E, Alonso-Ayuso M, Quemada M (2017) Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosys Eng 160:124–133CrossRefGoogle Scholar
  7. 7.
    Borhan MS, Panigrahi S, Lorenzen JH, Gu H (2004) Multispectral and color imaging techniques for nitrate and chlorophyll determination of potato leaves in a controlled environment. Trans ASAE 47(2):599–608CrossRefGoogle Scholar
  8. 8.
    Daniel AS, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2–3):337–354Google Scholar
  9. 9.
    He J, Liu B, Li J (2014) Monitoring model of leaf area index of winter wheat based on hyperspectral reflectance at different growth stages. Trans Chin Soc Agric Eng 30(24):141–150Google Scholar
  10. 10.
    Li F, Mistele B, Hu Y, Chen X, Schmidhalter U (2014) Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur J Agron 52(1):198–209CrossRefGoogle Scholar
  11. 11.
    Li F, Mistele B, Hu Y, Chen X, Schmidhalter U (2014) Optimising three-band spectral indices to assess aerial n concentration, n uptake and aboveground biomass of winter wheat remotely in China and Germany. ISPRS J Photogr Remote Sens 92(2):112–123CrossRefGoogle Scholar
  12. 12.
    Curran PJ, Dungan JL, Peterson DL (2001) Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark methodologies. Remote Sens Environ 76:349–359CrossRefGoogle Scholar
  13. 13.
    Fitzgerald G, Rodriguez D, Garry O (2010) Measuring and predicting canopy nitrogennutrition in wheat using a spectral index—the canopy chlorophyll content index (CCCI). Field Crops Res 116:318–324CrossRefGoogle Scholar
  14. 14.
    Perry EM, Fitzgerald GJ, Nuttall JG, O’leary GJ, Schulthess U, Whitlock A (2012) Rapid estimation of canopy nitrogen of cereal crops at paddock scale using a canopy chlorophyll content index. Field Crops Res 134:158–164CrossRefGoogle Scholar
  15. 15.
    Chen P, Haboudane D, Tremblay N, Wang J, Vigneault P, Li B (2010) New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens Environ 114(9):1987–1997CrossRefGoogle Scholar
  16. 16.
    Wang L, Wei Y (2013) Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing. Spectrosc Spectr Anal 33(10):2823–2827Google Scholar
  17. 17.
    Schlerf M, Atzberger C (2006) Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens Environ 100:281–294. CrossRefGoogle Scholar
  18. 18.
    Tan HZ, Li SK, Wang KR, Xie RZ, Gao SJ, Ming B, Yu Q, Lai JC, Liu GQ, Tang QX (2008) Monitoring canopy chlorophyll density in seedlings of winter wheat using imaging spectrometer. ACTA Agron 34(10):1812–1817CrossRefGoogle Scholar
  19. 19.
    Wang W, Peng Y, Ma W, Huang H, Wang X (2010) Prediction of chlorophyll content of winter wheat using leaf-level hyperspectral data. Trans Chin Soc Agric Mach 41(5):172–177Google Scholar
  20. 20.
    Zhang DY, Huang WJ, Wang JH, Yang GJ, Zhu DZ, Liu RY, Ma ZH (2010) In-situ crop hyperspectral acquiring and spectral features analysis based on push broom imaging spectrometer. Trans CSAE 26(12):188–192Google Scholar
  21. 21.
    Saari H, Pellikka I, Mäkynen J, Kai O (2011) Unmanned aerial vehicle (UAV) operated spectral camera system for forest and agriculture applications. Proceedings of spie. Int Soc Opt Eng 8174(1):466–471Google Scholar
  22. 22.
    Hruska R, Mitchell J, Anderson M, Glenn NF (2012) Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle. Remote Sens 4(12):2736–2752CrossRefGoogle Scholar
  23. 23.
    Lucieer A, Malenovskýz Z, Veness T, Wallace L (2014) Hyperuas-imaging spectroscopy from a multirotor unmanned aircraft system. J Field Robot 31(4):571–590CrossRefGoogle Scholar
  24. 24.
    Liu HY, Zhu HC, Wang P (2017) Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data. Int J Remote Sens 38(8–10):2117–2134CrossRefGoogle Scholar
  25. 25.
    Li LT, Zhang M, Ren T, Li XK, Cong RH, Wu LS, Lu JW (2015) Diagnosis of nutrition of rice using digital image processing technique. Plant Nutr Fertil Sci 21(1):259–268Google Scholar
  26. 26.
    Li J, Zhang F, Qian X, Zhu Y, Shen G (2015) Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle. Remote Sens Lett 6(3):183–189CrossRefGoogle Scholar
  27. 27.
    Dunn BL, Singh H, Goad C (2018) Relationship between chlorophyll meter readings and nitrogen in poinsettia leaves. J Plant Nutr 41(12):1–10CrossRefGoogle Scholar
  28. 28.
    Jay S, Maupas F, Bendoula R, Gorretta N (2017) Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Res 210:33–46CrossRefGoogle Scholar
  29. 29.
    Hunt ER Jr, Doraiswamy PC, McMurtrey JE, DaughtryT CST, Perry EM, Akhmedov B (2013) A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int J Appl Earth Obs Geoinf 21(1):103–112CrossRefGoogle Scholar
  30. 30.
    Zhang WL, Zeng CS, Gao DZ, Hu WF, Chen XY, Lin W (2014) Estimating the chlorophyll content of Kandelia candel based on hyper-spectral remote sensing in the Min River Estuarine wetland. Acta Ecol Sin 34(21):6190–6197Google Scholar
  31. 31.
    Li JX, Yang LP, Bai YL, Wang L (2015) The correlation of total nitrogen content with leaf spectral reflectance and SPAD values in different maize varieties. Soils Fertil Sci China 3:34–39Google Scholar
  32. 32.
    Chappelle EW, Kim MS, Iii MM (1992) Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens Environ 39(3):239–247CrossRefGoogle Scholar
  33. 33.
    Ling QH, Wang SH, Ding YF, Li GH (2017) Re-evaluation of using the color difference between the top 3rd leaf and the 4th leaf as a unified indicator for high-yielding. Rice Sci Agricu Sin 50(24):4705–4713Google Scholar
  34. 34.
    Sun H, Zhao Y, Zhang M, Wen Y, Li MZ, Yang W, Qin Z (2015) Multi-spectral image detection for maize canopy’s chlorophyll content in jointing stage. Trans Chin Soc Agric Eng 31:186–192Google Scholar
  35. 35.
    Xia SS, Zhang C, Li JZ, Li HJ, Zhang YM, Hu CS (2018) Diagnosis of nitrogen nutrient and recommended fertilization in summer corn using leaf digital images of cellphone camera. Chin J Eco-Agric 26(5):703–709Google Scholar
  36. 36.
    Tao ZQ, Bagum SA, Ma W, ZhouY BY, Fu JD, Cui RX, Sun XF, Zhao M (2016) Establishment of the crop growth and nitrogen nutrition state model using spectral parameters canopy cover. Spectrosc Spectr Anal 36(1):231–236Google Scholar
  37. 37.
    Wang Y, Wang DJ, Zhang G, Wang C (2012) Digital camera-based image segmentation of rice canopy and diagnosis of nitrogen nutrition. Trans Chin Soc Agric Eng 28(17):131–136Google Scholar
  38. 38.
    Niu Z, Chen YH, Sui HZ, Zhang QY, Zhao CJ (2000) Mechanism analysis of leaf biochemical concentration by high spectral remote sensing. J Remote Sens 4(2):125–130Google Scholar
  39. 39.
    Jiang QH, Tong F, Yu MZ, Zhang Y, Liao C, Liu F (2015) Hyperspectral technique: an opportunity in ecology. Plant Sci J 33(5):633–640Google Scholar
  40. 40.
    Ecarnot M, Compan F, Roumet P (2013) Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer. Field Crops Res 140(140):44–50CrossRefGoogle Scholar
  41. 41.
    Homolová L, Malenovský Z, Clevers JGPW, García-Santos G, Schaepman ME (2013) Review of optical-based remote sensing for plant trait mapping. Ecol Complex 15(5):1–16CrossRefGoogle Scholar
  42. 42.
    Li H, Zhao C, Huang W, Yang G (2013) Non-uniform vertical nitrogen distribution within plant canopy and its estimation by remote sensing: a review. Field Crops Res 142(3):75–84CrossRefGoogle Scholar
  43. 43.
    Hatfield JL, Gitelson AA, Schepers JS, Walthall CL (2015) Application of spectral remote sensing for agronomic decisions. Agron J 100(3):117–131Google Scholar
  44. 44.
    Zhao K, Valle D, Popescu S, Zhang X, Mallick B (2013) Hyperspectral remote sensing of plant biochemistry using bayesian model averaging with variable and band selection. Remote Sens Environ 132(10):102–119CrossRefGoogle Scholar
  45. 45.
    Yue YB, Nie KY, Li RJ, Li LJ, Sun CQ, Peng ZL, Zhao ZY (2014) Correlation of total nitrogen content in overground part of pepper at different nitrogen application level with canopy spectral reflectance. Guizhou Agric Sci 11:244–247Google Scholar
  46. 46.
    Li Y, Xue LH, Ma ZH, Pan FY, Yang LZ (2015) Research on sensitive spectrum of rice canopy for nitrogen under nitrogen and phosphorus interaction. Soils 47(1):33–41Google Scholar
  47. 47.
    Shao H, Shi QH, Guo X, Zhao XM (2015) Diagnosis of nitrogen nutrition of late rice based on canopy hyper-spectrum in hilly areas of jiangxi province. Acta Agric Univ Jiangxiensis (Nat Sci Edn) 6:975–981Google Scholar
  48. 48.
    Qin ZF, Chang QR, Xie BN, Shen J (2016) Rice leaf nitrogen content estimation based on hysperspectral imagery of UAV in Yellow River diversion irrigation district. Trans Chin Soc Agric Eng 32(23):77–85Google Scholar
  49. 49.
    Wang Y, Huang JF, Wang FM, Liu ZY (2008) Predicting nitrogen concentrations from hyperspectral reflectance at leaf and canopy for rape. Spectrosc Spectr Anal 28(2):273–277Google Scholar
  50. 50.
    Li Y, Xue LH, Ma ZH, Pan FY, Yang LZ (2015) Research on sensitive spectrum of rice canopy for nitrogen under nitrogen and phosphorus interaction. Soils 47(1):33–41Google Scholar
  51. 51.
    Bao Y, Xu K, Min J, Xu J (2013) Estimating wheat shoot nitrogen content at vegetative stage from in situ hyperspectral measurements. Crop Sci 53(5):2063–2071CrossRefGoogle Scholar
  52. 52.
    Lee YJ, Yang CM, Chang KW, Shen Y (2014) A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agron J 100(1):205–212CrossRefGoogle Scholar
  53. 53.
    Fernandez S, Vidal D, Simon E (1994) Radiometric characteristics of Triticum aestivum cv, Astral under water and nitrogen stress. Int J Remote Sens 15(9):1867–1884CrossRefGoogle Scholar
  54. 54.
    Tarpley L, Reddy KR, Sassenrathcole GF (2000) Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Sci 40(6):1814–1819CrossRefGoogle Scholar
  55. 55.
    Glenn F, Daniel R, Garry O (2010) Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—the canopy chlorophyll content index (CCCI). Field Crops Res 116(3):318–324CrossRefGoogle Scholar
  56. 56.
    Chen QC, Tian YC, Yao X, Zhu Y, CAO WX (2010) Effects of nitrogen fertilizer top-dressing based on canopy reflectance spectra in rice. Sci Agric Sin 43(20):149–4157Google Scholar
  57. 57.
    Gomez-Casero MT, Lopez-Granados F, Pena-Barragan JM, Jurado-Exposito M, Garcia-Torres L, Fernandez-Escobar R (2007) Assessing nitrogen and potassium deficiencies in olive orchards through discriminant analysis of hyperspectral data. J Am Soc Hortic Sci 132(5):611–618Google Scholar
  58. 58.
    Osborne S, Schepers J, Francis D, Schlemmer M (2002) Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agron J 94:1215–1221CrossRefGoogle Scholar
  59. 59.
    Zhang L, Cheng XP, Jia LL (2018) Parameter research of using UAV-based visible spectral analysis technology in dynamical diagnosis of nitrogen status of summer maize. Plant Nutr Fertil Sci 24(1):261–269Google Scholar
  60. 60.
    Wright D, Philiprasmussen V, Douglasramsey R, Douglasramsey R, Baker D, Ellsworth J (2004) Canopy reflectance estimation of wheat nitrogen content for grain protein management. Mapp Sci Remote Sens 41(4):287–300Google Scholar
  61. 61.
    Knyazikhin Y, Schull MA, Stenberg P, Mõttus M, Rautiainen M, Yang Y, Marshak A, Carmona PL, Kaufmann RK, Lewis P, Disney MI, Vanderbilt V, Davis AB, Baret F, Jacquemoud S, Lyapustin A, Myneni RB (2013) Hyperspectral remote sensing of foliar nitrogen content. PNAS 110(3):E185–E192CrossRefGoogle Scholar
  62. 62.
    Li J, Zhang F, Qian X, Zhu YH, Shen GX (2015) Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle. Remote Sens Lett 6(3):183–189CrossRefGoogle Scholar
  63. 63.
    Mao Y, Jiang QG, Li YH, Xiao CC, Fu CL (2016) Quantitative analysis and evaluation of domestic and overseas commercial RS satellites. Remote Sens Land Resour 28(1):1–6Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Deyu Feng
    • 1
  • Weihong Xu
    • 1
    Email author
  • Zhangmi He
    • 1
  • Wanyi Zhao
    • 1
  • Mei Yang
    • 1
  1. 1.College of Resources and Environmental SciencesSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations