Advertisement

A TOPSIS multi-criteria decision method-based intelligent recurrent wavelet CMAC control system design for MIMO uncertain nonlinear systems

  • Tuan-Tu Huynh
  • Tien-Loc Le
  • Chih-Min Lin
Original Article

Abstract

The main goal of this paper is to design a more effective control algorithm for multiple-input multiple-output uncertain nonlinear systems. Major advantages of the proposed method include: (1) A dynamic deletion threshold developed to consider whether to retain or to delete the hypercubes automatically so as to achieve more efficient network structure; (2) automatically parameter adaptation to achieve favorable control performance; (3) combine various techniques such as sliding-mode control, adaptive control, cerebellar model articulation controller and TOPSIS multi-criteria decision method for getting the advantages of these techniques. Based on the advantages of above techniques, a new intelligent recurrent wavelet cerebellar model articulation control system is designed. The gradient descent method is utilized to online adjust the parameters of the controller, and a Lyapunov function is employed to guarantee the system stability. The effectiveness of the proposed control scheme is validated through the applications for an inverted double pendulum system and an unmanned aerial vehicle motion control.

Keywords

TOPSIS Wavelet function Cerebellar model articulation controller Nonlinear system 

References

  1. 1.
    Perng JW, Hsieh SC, Ma LS, Chen GY (2018) Design of robust PI control systems based on sensitivity analysis and genetic algorithms. Neural Comput Appl 29(4):913–923CrossRefGoogle Scholar
  2. 2.
    Azar AT, Zhu Q (2015) Advances and applications in sliding mode control systems. Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Lin CM, Huynh TT (2018) Function-link fuzzy cerebellar model articulation controller design for nonlinear chaotic systems using TOPSIS multiple attribute decision-making method. Int J Fuzzy Syst 20(6):1839–1856MathSciNetCrossRefGoogle Scholar
  4. 4.
    Li H, Shi P, Yao D, Wu L (2016) Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64:133–142MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hsu CF, Kao WF (2018) Perturbation wavelet neural sliding mode position control for a voice coil motor driver. Neural Comput Appl.  https://doi.org/10.1007/s00521-018-3413-5 CrossRefGoogle Scholar
  6. 6.
    Su SF, Chen MC, Hsueh YC (2017) A novel fuzzy modeling structure-decomposed fuzzy system. IEEE Trans Syst Man Cybern 47(8):2311–2317CrossRefGoogle Scholar
  7. 7.
    Bui KTT, Tien Bui D, Zou J, Van Doan C, Revhaug I (2018) A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Comput Appl 29(12):1495–1506CrossRefGoogle Scholar
  8. 8.
    Xiong R, Cao J, Yu Q (2018) Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle. Appl Energy 211:538–548CrossRefGoogle Scholar
  9. 9.
    Bleuler S, Laumanns M, Thiele L, Zitzler E (2003) PISA—a platform and programming language independent interface for search algorithms. In: Evolutionary multi-criterion optimization, pp 494–508Google Scholar
  10. 10.
    Mallick S, Kar R, Mandal D, Ghoshal S (2017) Optimal sizing of CMOS analog circuits using gravitational search algorithm with particle swarm optimization. Int J Mach Learn Cybernet 8(1):309–331CrossRefGoogle Scholar
  11. 11.
    Zhang H, Ji Y, Huang W, Liu L (2018) Sitcom-star-based clothing retrieval for video advertising: a deep learning framework. Neural Comput Appl.  https://doi.org/10.1007/s00521-018-3579-x CrossRefGoogle Scholar
  12. 12.
    Matuszek C, Herbst E, Zettlemoyer L, Fox D (2013) Learning to parse natural language commands to a robot control system. Experimental Robotics 88:403–415CrossRefGoogle Scholar
  13. 13.
    De Medeiros TH, Rocha HP, Torres FS, Takahashi RHC, Braga AP (2017) Multi-objective decision in machine learning. J Control Autom Electr Syst 28(2):217–227CrossRefGoogle Scholar
  14. 14.
    Le NQK, Ho QT, Ou YY (2018) Classifying the molecular functions of Rab GTPases in membrane trafficking using deep convolutional neural networks. Anal Biochem 555:33–41CrossRefGoogle Scholar
  15. 15.
    Zhou M, DiCesare F (2012) Petri net synthesis for discrete event control of manufacturing systems. Springer, New YorkzbMATHGoogle Scholar
  16. 16.
    Zhang JH, Xia JJ, Garibaldi JM, Groumpos PP, Wang RB (2017) Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets. Comput Methods Progr Biomed 144:147–163CrossRefGoogle Scholar
  17. 17.
    Rodríguez RJ, Bernardi S, Zimmermann A (2018) An evaluation framework for comparative analysis of generalized stochastic petri net simulation techniques. IEEE Trans Syst Man Cybern.  https://doi.org/10.1109/TSMC.2018.2837643 CrossRefGoogle Scholar
  18. 18.
    Hassan S, Khanesar MA, Jaafar J, Khosravi A (2018) Optimal parameters of an ELM-based interval type 2 fuzzy logic system: a hybrid learning algorithm. Neural Comput Appl 29(4):1001–1014CrossRefGoogle Scholar
  19. 19.
    Yen VT, Nan WY, Van Cuong P (2018) Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators. Neural Comput Appl.  https://doi.org/10.1007/s00521-018-3520-3 CrossRefGoogle Scholar
  20. 20.
    Wang N, Su SF, Yin J, Zheng Z, Er MJ (2018) Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans Fuzzy Syst 26(3):1613–1625CrossRefGoogle Scholar
  21. 21.
    Lin D, Wang X, Nian F, Zhang Y (2010) Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing 73(16):2873–2881CrossRefGoogle Scholar
  22. 22.
    Wang Y, Lu Z, Qu Y, Li L, Wang N (2017) Improving prediction performance of GPS satellite clock bias based on wavelet neural network. GPS Solut 21(2):523–534CrossRefGoogle Scholar
  23. 23.
    Wang D, Liu D, Zhang Y, Li H (2018) Neural network robust tracking control with adaptive critic framework for uncertain nonlinear systems. Neural Netw 97:11–18CrossRefGoogle Scholar
  24. 24.
    Lin CM, Le TL (2017) PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems. Int J Fuzzy Syst 19(5):1362–1374MathSciNetCrossRefGoogle Scholar
  25. 25.
    Akbarzadeh-T MR, Hosseini S, Naghibi-Sistani MB (2017) Stable indirect adaptive interval type-2 fuzzy sliding-based control and synchronization of two different chaotic systems. Appl Soft Comput 55:576–587CrossRefGoogle Scholar
  26. 26.
    Lin FJ, Chen SG, Sun IF (2017) Intelligent sliding-mode position control using recurrent wavelet fuzzy neural network for electrical power steering system. Int J Fuzzy Syst 19(5):1344–1361MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hsu CF, Lee TT (2017) Emotional fuzzy sliding-mode control for unknown nonlinear systems. Int J Fuzzy Syst 19(3):942–953MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhou Q, Chao F, Lin CM (2018) A functional-link-based fuzzy brain emotional learning network for breast tumor classification and chaotic system synchronization. Int J Fuzzy Syst 20(2):349–365MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lin CM, Le TL, Huynh TT (2018) Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control. Neurocomputing 275(31):2239–2250CrossRefGoogle Scholar
  30. 30.
    Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications: a state-of-the-art survey. Springer, New YorkCrossRefGoogle Scholar
  31. 31.
    Mao N, Song M, Pan D, Deng S (2018) Comparative studies on using RSM and TOPSIS methods to optimize residential air conditioning systems. Energy 144:98–109CrossRefGoogle Scholar
  32. 32.
    Ouenniche J, Pérez-Gladish B, Bouslah K (2018) An out-of-sample framework for TOPSIS-based classifiers with application in bankruptcy prediction. Technol Forecast Soc Change 131:111–116CrossRefGoogle Scholar
  33. 33.
    Liu L, Liu X, Pei J, Fan W, Pardalos PM (2017) A study on decision making of cutting stock with frustum of cone bars. Oper Res Int J 17(1):187–204CrossRefGoogle Scholar
  34. 34.
    Kaur R, Singh S, Kumar H (2018) AuthCom: Authorship verification and compromised account detection in online social networks using AHP-TOPSIS embedded profiling based technique. Expert Syst Appl.  https://doi.org/10.1016/j.eswa.2018.07.011 CrossRefGoogle Scholar
  35. 35.
    Mayyas A, Omar MA, Hayajneh MT (2016) Eco-material selection using fuzzy TOPSIS method. Int J Sustain Eng 9(5):292–304Google Scholar
  36. 36.
    Afsordegan A, Sánchez M, Agell N, Zahedi S, Cremades LV (2016) Decision making under uncertainty using a qualitative TOPSIS method for selecting sustainable energy alternatives. Int J Environ Sci Technol 13(6):1419–1432CrossRefGoogle Scholar
  37. 37.
    Rao RV (2013) Decision making in manufacturing environment using graph theory and fuzzy multiple attribute decision making methods, vol 2. Springer, New YorkCrossRefGoogle Scholar
  38. 38.
    Albus JS (1975) A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J Dyn Syst Meas Control 97(3):220–227CrossRefGoogle Scholar
  39. 39.
    Hsu CF, Chung CM, Lin CM, Hsu CY (2009) Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm. Expert Syst Appl 36(9):11836–11843CrossRefGoogle Scholar
  40. 40.
    Lin CM, Peng YF, Lin MH (2009) CMAC-based adaptive backstepping synchronization of uncertain chaotic systems. Chaos Solitons Fractals 42(2):981–988MathSciNetCrossRefGoogle Scholar
  41. 41.
    Lin CM, Chen TY (2009) Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems. IEEE Trans Neural Netw 20(9):1377–1384CrossRefGoogle Scholar
  42. 42.
    Chiu CH (2010) The design and implementation of a wheeled inverted pendulum using an adaptive output recurrent cerebellar model articulation controller. IEEE Trans Ind Electron 57(5):1814–1822CrossRefGoogle Scholar
  43. 43.
    Lin CM, Li HY (2015) Dynamic petri fuzzy cerebellar model articulation controller design for a magnetic levitation system and a two-axis linear piezoelectric ceramic motor drive system. IEEE Trans Control Syst Technol 23(2):693–699CrossRefGoogle Scholar
  44. 44.
    Macnab C (2017) Creating a CMAC with overlapping basis functions in order to prevent weight drift. Soft Comput 21(16):4593–4600CrossRefGoogle Scholar
  45. 45.
    Macnab C (2017) Modifying CMAC adaptive control with weight smoothing in order to avoid overlearning and bursting. Neural Comput Appl.  https://doi.org/10.1007/s00521-017-3182-6 CrossRefGoogle Scholar
  46. 46.
    Shannon CE (2001) A mathematical theory of communication. Mobile Comput Commun Rev 5(1):3–55MathSciNetCrossRefGoogle Scholar
  47. 47.
    Zeleny M (1982) Multiple criteria decision making. McGraw-Hill, New YorkzbMATHGoogle Scholar
  48. 48.
    Chen BS, Lee CH, Chang YC (1996) Tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans Fuzzy Syst 4(1):32–43CrossRefGoogle Scholar
  49. 49.
    Lin CM, Li HY (2012) TSK fuzzy CMAC-based robust adaptive backstepping control for uncertain nonlinear systems. IEEE Trans Fuzzy Syst 20(6):1147–1154CrossRefGoogle Scholar
  50. 50.
    Lin CM, Tai CF, Chung CC (2014) Intelligent control system design for UAV using a recurrent wavelet neural network. Neural Comput Appl 24(2):487–496CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Innovation Center for Biomedical and Healthcare TechnologyYuan Ze UniversityTaoyuanTaiwan, ROC
  2. 2.Department of Electrical Electronic and Mechanical EngineeringLac Hong UniversityBien HoaVietnam

Personalised recommendations