Advertisement

DC–DC converters design using a type-2 wavelet fuzzy cerebellar model articulation controller

  • Chih-Min Lin
  • Van-Hoa La
  • Tien-Loc Le
Original Article
  • 49 Downloads

Abstract

Recently, boost and buck converters are widely applied in many applications, especially in recycled energy industry. The efficiency of DC–DC converter, which can increase or decrease the input voltage according to the driver output voltage, can effectively affect the total efficiency of the systems. In this paper, a sliding mode interval type-2 fuzzy wavelet cerebellar model articulation controller (T2WFCMAC)-based control system is designed for the DC–DC converters. The proposed control system contains a main controller and a robust compensation controller. The main controller is the T2WFCMAC which is used to mimic an ideal controller, and the robust compensation is designed to compensate for the approximation error between the main controller and the ideal controller. The sliding hyperplane is applied to improve the robustness of the control system. All the adaptive laws for adjusting the parameters of T2WFCMAC are obtained using the gradient descent method. The stability of control system is guaranteed in the sense of Lyapunov function. Finally, numerical experimental results of boost and buck converters are presented to illustrate the effectiveness of the proposed approach under the change in the input voltage and the load resistance variations.

Keywords

Type-2 fuzzy system Cerebellar model articulation controller DC–DC converter Buck–boost converter 

Notes

Acknowledgements

The authors appreciate the financial support in part from the Nation Science Council of Republic of China under Grant NSC 101-2221-E-155-026-MY3.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lin P-Z, Lin C-M, Hsu C-F, Lee T-T (2005) Type-2 fuzzy controller design using a sliding-mode approach for application to DC–DC converters. IEE Proc Electr Power Appl 152(6):1482–1488CrossRefGoogle Scholar
  2. 2.
    Lee Y-J, Khaligh A, Emadi A (2009) A compensation technique for smooth transitions in a noninverting buck–boost converter. IEEE Trans Power Electron 24(4):1002–1015CrossRefGoogle Scholar
  3. 3.
    Wu T-F, Lai Y-S, Hung J-C, Chen Y-M (2008) Boost converter with coupled inductors and buck–boost type of active clamp. IEEE Trans Ind Electron 55(1):154–162CrossRefGoogle Scholar
  4. 4.
    Alonso JM, Viña J, Vaquero DG, Martínez G, Osorio R (2012) Analysis and design of the integrated double buck–boost converter as a high-power-factor driver for power-LED lamps. IEEE Trans Ind Electron 59(4):1689–1697CrossRefGoogle Scholar
  5. 5.
    Bharadwaj P, John V (2017) High performance buck–boost converter based PV characterisation set-up. In: Proceedings of ECCE, pp 4425–4432Google Scholar
  6. 6.
    Vivek P, Ayshwarya R, Amali SJ, Sree AN (2016) A novel approach on MPPT algorithm for solar panel using buck boost converter. In: Proceedings of ICEETS, pp 396–399Google Scholar
  7. 7.
    Deniz E (2017) ANN-based MPPT algorithm for solar PMSM drive system fed by direct-connected PV array. Neural Comput Appl 28(10):3061–3072CrossRefGoogle Scholar
  8. 8.
    Oshaba A, Ali E, Elazim SA (2017) PI controller design for MPPT of photovoltaic system supplying SRM via BAT search algorithm. Neural Comput Appl 28(4):651–667CrossRefGoogle Scholar
  9. 9.
    Wang F, Wu X, Lee FC, Wang Z, Kong P, Zhuo F (2014) Analysis of unified output MPPT control in subpanel PV converter system. IEEE Trans Power Electron 29(3):1275–1284CrossRefGoogle Scholar
  10. 10.
    Yu G, Chew KWR, Sun ZC, Tang H, Siek L (2015) A 400 nW single-inductor dual-input-tri-output DC–DC buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting. IEEE J Solid State Circuits 50(11):2758–2772CrossRefGoogle Scholar
  11. 11.
    Sreekanth T, Lakshminarasamma N, Mishra MK (2017) A single-stage grid-connected high gain buck–boost inverter with maximum power point tracking. IEEE Trans Energy Convers 32(1):330–339CrossRefGoogle Scholar
  12. 12.
    Agostinelli M, Priewasser R, Marsili S, Huemer M (2011) Fixed-frequency pseudo sliding mode control for a buck–boost DC–DC converter in mobile applications: a comparison with a linear PID controller. In: Proceedings of ISCAS, pp 1604–1607Google Scholar
  13. 13.
    Cheng K-H, Hsu C-F, Lin C-M, Lee T-T, Li C (2007) Fuzzy-neural sliding-mode control for DC–DC converters using asymmetric Gaussian membership functions. IEEE Trans Ind Electron 54(3):1528–1536CrossRefGoogle Scholar
  14. 14.
    Kumbhojkar A, Patel N, Kumbhojkar A (2014) A novel sliding mode control technique for DC to DC buck converter. In: Proceedings of ICCPCT, pp 881–886Google Scholar
  15. 15.
    Cheng L, Acuna P, Aguilera RP, Ciobotaru M, Jiang J (2016) Model predictive control for DC–DC boost converters with constant switching frequency. In: Proceedings of SPEC, pp 1–6Google Scholar
  16. 16.
    Albus JS (1975) A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J Dyn Syst Meas Control 97(3):220–227CrossRefGoogle Scholar
  17. 17.
    Lin C-M, Lin M-H, Yeh R-G (2013) Synchronization of unified chaotic system via adaptive wavelet cerebellar model articulation controller. Neural Comput Appl 23(3–4):965–973CrossRefGoogle Scholar
  18. 18.
    Lin C-M, Chen T-Y (2009) Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems. IEEE Trans Neural Netw 20(9):1377–1384CrossRefGoogle Scholar
  19. 19.
    Lin C-M, Le T-L (2017) WCMAC-based control system design for nonlinear systems using PSO. J Intell Fuzzy Syst 33(2):807–818CrossRefGoogle Scholar
  20. 20.
    Lin C-M, Yang M-S, Chao F, Hu X-M, Zhang J (2016) Adaptive filter design using type-2 fuzzy cerebellar model articulation controller. IEEE Trans Neural Netw Learn Syst 27(10):2084–2094MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lu H-C, Chuang C-Y (2011) Robust parametric CMAC with self-generating design for uncertain nonlinear systems. Neurocomputing 74(4):549–562CrossRefGoogle Scholar
  22. 22.
    Lin C-M, Li H-Y (2013) Intelligent hybrid control system design for antilock braking systems using self-organizing function-link fuzzy cerebellar model articulation controller. IEEE Trans Fuzzy Syst 21(6):1044–1055CrossRefGoogle Scholar
  23. 23.
    Wang J-G, Tai S-C, Lin C-J (2014) Medical diagnosis applications using a novel interactively recurrent self-evolving fuzzy CMAC model. In: Proceedings of IJCNN, pp 4092–4098Google Scholar
  24. 24.
    Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550CrossRefGoogle Scholar
  26. 26.
    Wu D (2013) Two differences between interval type-2 and type-1 fuzzy logic controllers: adaptiveness and novelty. In: Sadeghian A, Mendel J, Tahayori H (eds) Advances in type-2 fuzzy sets and systems. Springer, New York, pp 33–48CrossRefGoogle Scholar
  27. 27.
    Wu Dongrui (2012) On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans Fuzzy Syst 20(5):832–848CrossRefGoogle Scholar
  28. 28.
    Zhang Z (2018) Trapezoidal interval type-2 fuzzy aggregation operators and their application to multiple attribute group decision making. Neural Comput Appl 29(4):1039–1054MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mohagheghi V, Mousavi SM, Vahdani B (2017) Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Comput Appl 28(11):3393–3411CrossRefGoogle Scholar
  30. 30.
    Eyoh I, John R, De Maere G (2017) Interval type-2 intuitionistic fuzzy logic for regression problems. IEEE Trans Fuzzy Syst.  https://doi.org/10.1109/TFUZZ.2017.2775599 CrossRefGoogle Scholar
  31. 31.
    Hsu C-F, Lin C-M, Lee T-T (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans Neural Netw 17(5):1175–1183CrossRefGoogle Scholar
  32. 32.
    Mai T, Wang Y (2014) Adaptive force/motion control system based on recurrent fuzzy wavelet CMAC neural networks for condenser cleaning crawler-type mobile manipulator robot. IEEE Trans Control Syst Technol 22(5):1973–1982CrossRefGoogle Scholar
  33. 33.
    Wai R-J, Duan R-Y, Lee J-D, Chang H-H (2003) Wavelet neural network control for induction motor drive using sliding-mode design technique. IEEE Trans Ind Electron 50(4):733–748CrossRefGoogle Scholar
  34. 34.
    Yang J, Li S, Yu X (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron 60(1):160–169CrossRefGoogle Scholar
  35. 35.
    Yu X, Kaynak O (2009) Sliding-mode control with soft computing: a survey. IEEE Trans Ind Electron 56(9):3275–3285CrossRefGoogle Scholar
  36. 36.
    Yu X, Wang B, Li X (2012) Computer-controlled variable structure systems: the state-of-the-art. IEEE Trans Ind Inf 8(2):197–205CrossRefGoogle Scholar
  37. 37.
    Wang J, Gao Y, Qiu J, Ahn CK (2016) Sliding mode control for non-linear systems by Takagi–Sugeno fuzzy model and delta operator approaches. IET Control Theory Appl 11(8):1205–1213MathSciNetCrossRefGoogle Scholar
  38. 38.
    Morkoç C, Önal Y, Kesler M (2014) DSP based embedded code generation for PMSM using sliding mode controller. In: Proceedings of PEMC, pp 472–476Google Scholar
  39. 39.
    Yadegari H, Chao H, Yukai Z (2016) Finite time sliding mode controller for a rigid satellite in presence of actuator failure. In: Proceedings of ICISCE), pp 1327–1331Google Scholar
  40. 40.
    Ding S, Li S (2017) Second-order sliding mode controller design subject to mismatched term. Automatica 77:388–392MathSciNetCrossRefGoogle Scholar
  41. 41.
    Umamaheswari M, Uma G, Vijayalakshmi K (2011) Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters. IET Power Electron 4(9):984–992CrossRefGoogle Scholar
  42. 42.
    Cuk S, Middlebrook R (1983) Advances in switched-mode power conversion part I. IEEE Trans Ind Electron 30(1):10–19CrossRefGoogle Scholar
  43. 43.
    Krein PT, Bentsman J, Bass RM, Lesieutre BL (1990) On the use of averaging for the analysis of power electronic systems. IEEE Trans Power Electron 5(2):182–190CrossRefGoogle Scholar
  44. 44.
    Slotine J-JE, Li W (1991) Applied nonlinear control, vol 199. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  45. 45.
    Lin C-M, Chen Y-M, Hsueh C-S (2014) A self-organizing interval type-2 fuzzy neural network for eadar emitter identification. Int J Fuzzy Syst 16(1):120–130Google Scholar

Copyright information

© The Natural Computing Applications Forum 2018

Authors and Affiliations

  1. 1.Yuan Ze UniversityTaoyüanTaiwan, ROC
  2. 2.Department of Electrical Electronic and Mechanical EngineeringLac Hong UniversityBien HoaVietnam

Personalised recommendations