Robust object tracking with the inverse relocation strategy

  • Shuhe SunEmail author
  • Zhiyong An
  • Xinbo Jiang
  • Bin Zhang
  • Jianghui Zhang
S.I. : Machine Learning Applications for Self-Organized Wireless Networks


Robust object tracking is a challenging task in multimedia understanding and computer vision. The traditional tracking algorithms only use the forward tracking information while neglecting the inverse information. An inverse relocation strategy is used to learn the translation and scale filters in the proposed tracking algorithm. To begin with, we learn a translation filter using both the forward and the inverse tracking information based on the ridge regression. The object position can be attained using the translation filter by the inverse relocation strategy. Secondly, the scale filter can be attained using the ridge regression and a smooth strategy is adopted to integrate the forward and inverse scale factors. Experiments are performed on the scale variation dataset and the OTB-50 dataset. Extensive experimental results show that the proposed algorithm performs favorably against several state-of-the-art methods in terms of precision and success rate. Meanwhile, the proposed algorithm is also robustness to the deformation to a great extent.


Object tracking Correlation filter Video surveillance Ridge regression 



The authors are grateful to the support by National Natural Science Foundation of Shandong Province (Grant: ZR2013FL018).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Zhao Z, Wang T, Liu F et al (2017) Remarkable local resampling based on particle filter for visual tracking. Multimed Tools Appl 76(1):835–860CrossRefGoogle Scholar
  2. 2.
    Zhang T, Ghanem B, Liu S, Ahuja N (2013) Robust visual tracking via structured multi-task sparse learning. Int J Comput Vision 101(2):367–383MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hsia CH, Liou YJ, Chiang JS (2016) Directional prediction CamShift algorithm based on adaptive search pattern for moving object tracking. J Real Time Image Proc 12(1):183–195CrossRefGoogle Scholar
  4. 4.
    Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422CrossRefGoogle Scholar
  5. 5.
    Zhang K, Zhang L, Yang M-H (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015CrossRefGoogle Scholar
  6. 6.
    Zhang L, Varadarajan J, Suganthan PN (2017) Robust visual tracking using oblique random forests. In: IEEE Conference on computer vision and pattern recognition. IEEE Computer Society, pp 5825–5834Google Scholar
  7. 7.
    Wang M, Liu Y, Huang Z (2017) Large margin object tracking with circulant feature maps. In: Proceedings of IEEE computer vision and pattern recognition, pp 4800–4808Google Scholar
  8. 8.
    Hare S, Saffari A, Struck Torr P H S (2016) Structured output tracking with kernels. IEEE Trans Pattern Anal Mach Intell 38(10):2096–2109CrossRefGoogle Scholar
  9. 9.
    Jianming Zhang, Shugao Ma, and Stan Sclaro (2014) MEEM: robust tracking via multiple experts using entropy minimization, In: European conference on computer vision. Springer, pp 188–203Google Scholar
  10. 10.
    Henriques JF, Caseiro R, Martins P, Batista J (2015) High speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596CrossRefGoogle Scholar
  11. 11.
    Liu T, Wang G, Yang Q (2016) Part-based tracking via discriminative correlation filters. IEEE Trans Circuits Syst Video Technol 12:1CrossRefGoogle Scholar
  12. 12.
    Lukezic A, Vojir T, Zajc L C(2017) Discriminative correlation filter with channel and spatial reliability. In: IEEE Conference on computer vision and pattern recognition, pp 4847–4856Google Scholar
  13. 13.
    Ma C, Yang X, Zhang C(2015) Long-term correlation tracking. In: IEEE international conference on computer vision and pattern recognition, pp 5388–5396Google Scholar
  14. 14.
    Tang M, Feng J (2016) Multi-kernel correlation filter for visual tracking. In: IEEE international conference on computer vision. IEEE, pp 3038–3046Google Scholar
  15. 15.
    Nam H, Han B (2016) Learning multi-domain convolutional neural networks for visual tracking. In: IEEE international conference on computer vision and pattern recognition, pp 4293–4302Google Scholar
  16. 16.
    Valmadre J, Bertinetto L, Henriques J (2017) End-to-end representation learning for correlation filter based tracking. In: International conference on computer vision and pattern recognition, pp 5000–5008Google Scholar
  17. 17.
    Tharwat A, Elhoseny M, Hassanien AE, Gabel T (2018) Intelligent beziér curve-based path planning model using chaotic particle swarm optimization algorithm. Cluster Comput 20(3):1–22Google Scholar
  18. 18.
    Zheng Z, Jeong HY, Huang T (2017) KDE based outlier detection on distributed data streams in multimedia network[J]. Multimed Tools Appl 76(17):18027–18045CrossRefGoogle Scholar
  19. 19.
    Hua W, Mu D, Zheng Z (2018) Online multi-person tracking assist by high-performance detection. J Supercomput. Google Scholar
  20. 20.
    Pan S, Sun W, Zheng Z (2017) Video segmentation algorithm based on superpixel link weight model[J]. Multimed Tools Appl 76(19):19741–19760CrossRefGoogle Scholar
  21. 21.
    Yuan Xiaohui, Li Daniel, Mohapatra Deepankar, Elhoseny Mohamed (2017) Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding. Comput Electr Eng. Google Scholar
  22. 22.
    Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: International conference on computer vision and pattern recognition, pp 2411–2418Google Scholar
  23. 23.
    Danelljan M, Häger G, Khan FS et al. (2014) Accurate scale estimation for robust visual tracking[C]. In: British machine vision conference, pp 1–11Google Scholar
  24. 24.
    Zhang K, Zhang L Liu, D. Zhang, and M.H. Yang (2014) Fast visual tracking via dense spatio-temporal context learning. In: European conference on computer vision, pp 127–141Google Scholar
  25. 25.
    Dai M, Cheng S, Xiangjian H, Wang D (2018) Object tracking in the presence of shaking motions. Neural Comput Appl. Google Scholar
  26. 26.
    Danelljan M, Hager G, Khan F (2017) Discriminative scale space tracking[J]. Trans Pattern Anal Mach Intell 39(8):1561–1575CrossRefGoogle Scholar
  27. 27.
    Zhiyong A, Guan H, Jinjiang L (2017) Robust visual tracking using the bidirectional scale estimation. Math Probl Eng 1:1–10Google Scholar
  28. 28.
    Sevilla-Lara L, Learned-Miller E (2012) Distribution fields for tracking. In: IEEE conference on computer vision and pattern recognition, pp 1910–1917Google Scholar
  29. 29.
    Kwon J, Lee KM (2011) Tracking by sampling trackers. In: IEEE international conference on computer vision, pp 1195–1202Google Scholar

Copyright information

© The Natural Computing Applications Forum 2018

Authors and Affiliations

  • Shuhe Sun
    • 1
    • 3
    Email author
  • Zhiyong An
    • 1
    • 2
  • Xinbo Jiang
    • 3
  • Bin Zhang
    • 3
  • Jianghui Zhang
    • 3
  1. 1.Key Laboratory of Intelligent Information ProcessingUniversities of Shandong (Shandong Technology and Business University)YantaiChina
  2. 2.Shandong Co-Innovation Center of Future Intelligent ComputingYantaiChina
  3. 3.School of Computer Science and TechnologyShandong Technology and Business UniversityYantaiChina

Personalised recommendations