Learning–interaction–diversification framework for swarm intelligence optimizers: a unified perspective

  • Xianghua Chu
  • Teresa Wu
  • Jeffery D. Weir
  • Yuhui Shi
  • Ben Niu
  • Li LiEmail author
Original Article


Due to the efficiency and efficacy in performance to tackle complex optimization problems, swarm intelligence (SI) optimizers, newly emerged as nature-inspired algorithms, have gained great interest from researchers over different fields. A large number of SI optimizers and their extensions have been developed, which drives the need to comprehensively review the characteristics of each algorithm. Hence, a generalized framework laid upon the fundamental principles from which SI optimizers are developed is crucial. This research takes a multidisciplinary view by exploring research motivations from biology, psychology, computing and engineering. A learning–interaction–diversification (LID) framework is proposed where learning is to understand the individual behavior, interaction is to describe the swarm behavior, and diversification is to control the population performance. With the LID framework, 22 state-of-the-art SI algorithms are characterized, and nine representative ones are selected to review in detail. To investigate the relationships between LID properties and algorithmic performance, LID-driven experiments using benchmark functions and real-world problems are conducted. Comparisons and discussions on learning behaviors, interaction relations and diversity control are given. Insights of the LID framework and challenges are also discussed for future research directions.


Swarm intelligence Evolutionary algorithm Meta-heuristic algorithm Nature-inspired algorithm 



This work was partially supported by the Major Project for National Natural Science Foundation of China (Grant No. 71790615, the design for Decision-making System of National Security Management), the Key Project of National Nature Science Foundation of China (Grant No. 71431006, Decision Support Theory and Platform of the Embedded Service for Environmental Management), the National Natural Science Foundation of China (Grant No. 71501132, 71701079, 71571120, 71371127 and 61273367), the Natural Science Foundation of Guangdong Province (2016A030310067), and the 2016 Tencent “Rhinoceros Birds”—Scientific Research Foundation for Young Teachers of Shenzhen University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

521_2018_3657_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1374 kb)


  1. 1.
    Beni G, Wang J (1993) Swarm intelligence in cellular robotic systems. Springer, Berlin, pp 703–712Google Scholar
  2. 2.
    Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New YorkzbMATHGoogle Scholar
  3. 3.
    Das S, Abraham A, Konar A (2008) Swarm intelligence algorithms in bioinformatics. Springer, Berlin, pp 113–147Google Scholar
  4. 4.
    Mavrovouniotis M, Li CH, Yang SX (2017) A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol Comput 33:1–17CrossRefGoogle Scholar
  5. 5.
    Parpinelli RS, Lopes HS (2011) New inspirations in swarm intelligence: a survey. Int J Bioinspir Comut 3(1):1–16Google Scholar
  6. 6.
    Yang XS, Deb S, Zhao YX, Fong S, He X (2017) Swarm intelligence: past, present and future. Soft Comput. Google Scholar
  7. 7.
    Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life, pp 134–142Google Scholar
  8. 8.
    Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26(1):29–41CrossRefGoogle Scholar
  9. 9.
    Ghasemi E (2017) Particle swarm optimization approach for forecasting backbreak induced by bench blasting. Neural Comput Appl 28(7):1855–1862CrossRefGoogle Scholar
  10. 10.
    Jordehi AR (2014) Particle swarm optimisation for dynamic optimisation problems: a review. Neural Comput Appl 25(7–8):1507–1516CrossRefGoogle Scholar
  11. 11.
    Milner S, Davis C, Zhang H, Llorca J (2012) Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans Mob Comput 11(7):1207–1222CrossRefGoogle Scholar
  12. 12.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks proceedings, pp 1942–1948Google Scholar
  13. 13.
    Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE world conference on computational intelligence, pp 69–73Google Scholar
  14. 14.
    Akay B, Karaboga D (2015) A survey on the applications of artificial bee colony in signal, image, and video processing. SIViP 9(4):967–990CrossRefGoogle Scholar
  15. 15.
    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kumar Y, Sahoo G (2017) A two-step artificial bee colony algorithm for clustering. Neural Comput Appl 28(3):537–551CrossRefGoogle Scholar
  17. 17.
    Rajasekhar A, Lynn N, Das S, Suganthan PN (2017) Computing with the collective intelligence of honey bees—a survey. Swarm Evol Comput 32:25–48CrossRefGoogle Scholar
  18. 18.
    Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2–3):243–278MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6(4):467–484MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124zbMATHCrossRefGoogle Scholar
  21. 21.
    Neshat M, Sepidnam G, Sargolzaei M, Toosi AN (2014) Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif Intell Rev 42(4):965–997CrossRefGoogle Scholar
  22. 22.
    Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31(1–4):61–85CrossRefGoogle Scholar
  23. 23.
    Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57CrossRefGoogle Scholar
  24. 24.
    Li JQ, Pan QK, Duan PY (2016) An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping. IEEE Trans Cybern 46(6):1311–1324CrossRefGoogle Scholar
  25. 25.
    Fister I, Perc M, Kamal SM, Fister I (2015) A review of chaos-based firefly algorithms: perspectives and research challenges. Appl Math Comput 252:155–165MathSciNetzbMATHGoogle Scholar
  26. 26.
    Fister I Jr, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46CrossRefGoogle Scholar
  27. 27.
    Cheung NJ, Ding XM, Shen HB (2017) A nonhomogeneous cuckoo search algorithm based on quantum mechanism for real parameter optimization. IEEE Trans Cybern 47(2):391–402Google Scholar
  28. 28.
    Yang X-S, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174CrossRefGoogle Scholar
  29. 29.
    Duan H, Luo Q (2015) New progresses in swarm intelligence-based computation. Int J Bioinspired Comput 7(1):26–35CrossRefGoogle Scholar
  30. 30.
    Giagkiozis I, Purshouse RC, Fleming PJ (2015) An overview of population-based algorithms for multi-objective optimisation. Int J Syst Sci 46(9):1572–1599MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kar AK (2016) Bio inspired computing—a review of algorithms and scope of applications. Expert Syst Appl 59:20–32CrossRefGoogle Scholar
  32. 32.
    Zelinka I (2015) A survey on evolutionary algorithms dynamics and its complexity—mutual relations, past, present and future. Swarm Evol Comput 25:2–14CrossRefGoogle Scholar
  33. 33.
    Ab Wahab MN, Nefti-Meziani S, Atyabi A (2015) A comprehensive review of swarm optimization algorithms. PLoS ONE 10(5):36CrossRefGoogle Scholar
  34. 34.
    El-Abd M (2012) Performance assessment of foraging algorithms vs. evolutionary algorithms. Inf Sci 182(1):243–263MathSciNetCrossRefGoogle Scholar
  35. 35.
    Beheshti Z, Shamsuddin SM, Hasan S (2015) Memetic binary particle swarm optimization for discrete optimization problems. Inf Sci 299:58–84CrossRefGoogle Scholar
  36. 36.
    Cavalcante RC, Brasileiro RC, Souza VLP, Nobrega JP, Oliveira ALI (2016) Computational intelligence and financial markets: a survey and future directions. Expert Syst Appl 55:194–211CrossRefGoogle Scholar
  37. 37.
    Chaurasia SN, Singh A (2015) A hybrid swarm intelligence approach to the registration area planning problem. Inf Sci 302:50–69CrossRefGoogle Scholar
  38. 38.
    Zhang H, Cao X, Ho JK, Chow TW (2017) Object-level video advertising: an optimization framework. IEEE Trans Industr Inform 13(2):520–531CrossRefGoogle Scholar
  39. 39.
    Cheng Weng F, Asmuni H, McCollum B, McMullan P, Omatu S (2014) A new hybrid imperialist swarm-based optimization algorithm for university timetabling problems. Inf Sci 283:1–21CrossRefGoogle Scholar
  40. 40.
    Qin Q, Cheng S, Chu X, Lei X, Shi Y (2017) Solving non-convex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization. Appl Soft Comput 59:229–242CrossRefGoogle Scholar
  41. 41.
    Esmin AAA, Coelho RA, Matwin S (2015) A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif Intell Rev 44(1):23–45CrossRefGoogle Scholar
  42. 42.
    Habbi H, Boudouaoui Y, Karaboga D, Ozturk C (2015) Self-generated fuzzy systems design using artificial bee colony optimization. Inf Sci 295:145–159MathSciNetCrossRefGoogle Scholar
  43. 43.
    Kiran MS, Hakli H, Gunduz M, Uguz H (2015) Artificial bee colony algorithm with variable search strategy for continuous optimization. Inf Sci 300:140–157MathSciNetCrossRefGoogle Scholar
  44. 44.
    Mahdavi S, Shiri ME, Rahnamayan S (2015) Metaheuristics in large-scale global continues optimization: a survey. Inf Sci 295:407–428MathSciNetCrossRefGoogle Scholar
  45. 45.
    Marie-Sainte SL (2015) A survey of particle swarm optimization techniques for solving university examination timetabling problem. Artif Intell Rev 44(4):537–546CrossRefGoogle Scholar
  46. 46.
    Mei Kuan L, Chee Seng C, Monekosso D, Remagnino P (2014) Refined particle swarm intelligence method for abrupt motion tracking. Inf Sci 283:267–287CrossRefGoogle Scholar
  47. 47.
    Nebti S, Boukerram A (2017) Swarm intelligence inspired classifiers for facial recognition. Swarm Evol Comput 32:150–166CrossRefGoogle Scholar
  48. 48.
    Pacini E, Mateos C, Garino CG (2014) Distributed job scheduling based on swarm intelligence: a survey. Comput Electr Eng 40(1):252–269CrossRefGoogle Scholar
  49. 49.
    Ran C, Yaochu J (2015) A social learning particle swarm optimization algorithm for scalable optimization. Inf Sci 291:43–60MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Saleem M, Di Caro GA, Farooq M (2011) Swarm intelligence based routing protocol for wireless sensor networks: survey and future directions. Inf Sci 181(20):4597–4624CrossRefGoogle Scholar
  51. 51.
    Wang Z, Qin L, Yang W (2015) A self-organising cooperative hunting by robotic swarm based on particle swarm optimisation localisation. Int J Bioinspired Comput 7(1):68–73CrossRefGoogle Scholar
  52. 52.
    Zebing W, Li Q, Wei Y (2015) A self-organising cooperative hunting by robotic swarm based on particle swarm optimisation localisation. Int J Bioinspired Comput 7(1):68–73CrossRefGoogle Scholar
  53. 53.
    Zhang S, Lee CKM, Chan HK, Choy KL, Wu Z (2014) Swarm intelligence applied in green logistics: a literature review. Eng Appl Artif Intell 37:154–169CrossRefGoogle Scholar
  54. 54.
    Zhao ZS, Feng X, Lin YY, Wei F, Wang SK, Xiao TL, Cao MY, Hou ZG (2015) Evolved neural network ensemble by multiple heterogeneous swarm intelligence. Neurocomputing 149:29–38CrossRefGoogle Scholar
  55. 55.
    Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218(1):1–11MathSciNetCrossRefGoogle Scholar
  56. 56.
    Tang R, Fong S, Yang X-S, Deb S (2012) Wolf search algorithm with ephemeral memory. In: 7th international conference on digital information management, ICDIM 2012, pp 165–172Google Scholar
  57. 57.
    Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of IEEE congress on evolutionary computation, pp 1671–1676Google Scholar
  58. 58.
    Yang X-S (2010) A new metaheuristic bat-inspired algorithm. Springer, Berlin, pp 65–74zbMATHGoogle Scholar
  59. 59.
    Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67MathSciNetCrossRefGoogle Scholar
  60. 60.
    Weiss G (2000) Multiagent systems: a modern approach to distributed artificial intelligence. MIT Press, CambridgeGoogle Scholar
  61. 61.
    Pehlivanoglu YV (2013) A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks. IEEE Trans Evol Comput 17(3):436–452CrossRefGoogle Scholar
  62. 62.
    Hu M, Wu T, Weir JD (2012) An intelligent augmentation of particle swarm optimization with multiple adaptive methods. Inf Sci 213:68–83CrossRefGoogle Scholar
  63. 63.
    Shi Y, Eberhart R (2008) Population diversity of particle swarms. In: 2008 IEEE congress on evolutionary computation, pp 1063–1067Google Scholar
  64. 64.
    Sörensen K (2015) Metaheuristics—the metaphor exposed. Int Trans Oper Res 22(1):3–18MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Li X, Shao Z, Qian J (2002) An optimizing method based on autonomous animals: fish-swarm algorithm. Syst Eng Theory Pract 22(11):32–38Google Scholar
  66. 66.
    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Erciyes University, KayseriGoogle Scholar
  67. 67.
    Teodorović D, Dell’Orco M (2005) Bee colony optimization—a cooperative learning approach to complex transportation problems. Adv OR AI Methods Transp 51:60Google Scholar
  68. 68.
    Krishnanand KN, Ghose D (2005) Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: 2005 IEEE swarm intelligence symposium, pp 84–91Google Scholar
  69. 69.
    Chu S-C, P-w Tsai, Pan J-S (2006) Cat swarm optimization. Springer, Berlin, pp 854–858Google Scholar
  70. 70.
    Havens TC, Spain CJ, Salmon NG, Keller JM (2008) Roach infestation optimization. In: 2008 IEEE swarm intelligence symposium, pp 1–7Google Scholar
  71. 71.
    Monismith DR, Mayfield BE (2008) Slime mold as a model for numerical optimization. In: 2008 IEEE swarm intelligence symposium, pp 1–8Google Scholar
  72. 72.
    Yang X-S, Deb S (2009) Cuckoo search via levy flights. In: 2009 world congress on nature & biologically inspired computing, pp 210–214Google Scholar
  73. 73.
    He S, Wu QH, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 13(5):973–990CrossRefGoogle Scholar
  74. 74.
    Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bioinspir Comut 2(2):78–84Google Scholar
  75. 75.
    Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. Springer, Berlin, pp 355–364Google Scholar
  76. 76.
    Iordache S (2010) Consultant-guided search: a new metaheuristic for combinatorial optimization problems. In: GECCO’10 proceedings of the 12th annual conference on genetic and evolutionary computation, pp 225–232Google Scholar
  77. 77.
    Shi Y (2011) Brain storm optimization algorithm. Springer, Berlin, pp 303–309Google Scholar
  78. 78.
    Pan WT (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74CrossRefGoogle Scholar
  79. 79.
    Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Cuevas E, Cienfuegos M, Zaldivar D, Perez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384CrossRefGoogle Scholar
  81. 81.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  82. 82.
    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium of micro machine and human science, pp 39–43Google Scholar
  83. 83.
    Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: 2007 IEEE swarm intelligence symposium, pp 120–127Google Scholar
  84. 84.
    Zhang YD, Wang SH, Ji GL (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015:1–38MathSciNetGoogle Scholar
  85. 85.
    Zhao WG, Wang LY (2016) An effective bacterial foraging optimizer for global optimization. Inf Sci 329:719–735CrossRefGoogle Scholar
  86. 86.
    Niu B, Fan Y, Tan LJ, Rao JJ, Li L (2010) A review of bacterial foraging optimization part I: background and development. Adv Intell Comput Theor Appl 93:535–543zbMATHGoogle Scholar
  87. 87.
    Li XT, Yin MH (2015) Modified cuckoo search algorithm with self adaptive parameter method. Inf Sci 298:80–97CrossRefGoogle Scholar
  88. 88.
    Saji Y, Riffi ME (2016) A novel discrete bat algorithm for solving the travelling salesman problem. Neural Comput Appl 27(7):1853–1866CrossRefGoogle Scholar
  89. 89.
    Wang B, Li DX, Jiang JP, Liao YH (2016) A modified firefly algorithm based on light intensity difference. J Comb Optim 31(3):1045–1060MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Imran AM, Kowsalya M (2014) A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm. Int J Electr Power Energy Syst 62:312–322CrossRefGoogle Scholar
  91. 91.
    Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Advances in swarm intelligence, pp 355–364Google Scholar
  92. 92.
    Fong S, Deb S, Hanne T, Li JY (2016) Eidetic wolf search algorithm with a global memory structure. Eur J Oper Res 254(1):19–28MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Zhu AJ, Xu CP, Li Z, Wu J, Liu ZB (2015) Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. J Syst Eng Electron 26(2):317–328CrossRefGoogle Scholar
  94. 94.
    Chu X, Hu M, Wu T, Weir JD, Lu Q (2014) Ahps2: an optimizer using adaptive heterogeneous particle swarms. Inf Sci 280:26–52CrossRefGoogle Scholar
  95. 95.
    Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295CrossRefGoogle Scholar
  96. 96.
    JCGM (2008) International vocabulary of metrology—basic and general concepts and associated terms (VIM)Google Scholar
  97. 97.
    Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15(6):617–644zbMATHCrossRefGoogle Scholar
  98. 98.
    Akay B, Karaboga D (2009) Parameter tuning for the artificial bee colony algorithm, pp 608–619Google Scholar
  99. 99.
    Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 1945–1950Google Scholar
  100. 100.
    Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18CrossRefGoogle Scholar
  101. 101.
    Shi Y, Eberhart R (2008) Population diversity of particle swarms. In: 2008 IEEE congress on evolutionary computation, Hong Kong, China, pp 1063–1067Google Scholar
  102. 102.
    Moloi NP, Ali MM (2005) An iterative global optimization algorithm for potential energy minimization. Comput Optim Appl 30(2):119–132MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Das S, Suganthan PN (2011) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Technical report, Jadavpur University, India and Nanyang Technological University, SingaporeGoogle Scholar
  104. 104.
    Mladenović N, Petrović J, Kovačević-Vujčić V, Čangalović M (2003) Solving spread spectrum radar polyphase code design problem by tabu search and variable neighbourhood search. Eur J Oper Res 151(2):389–399MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Yang XS, Cui ZH (2014) Bio-inspired computation: success and challenges of IJBIC. Int J Bioinspired Comput 3(2):77–84CrossRefGoogle Scholar
  106. 106.
    van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937–971MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Chen WN, Zhang J, Chung HSH, Zhong WL, Wu WG, Shi YH (2010) A novel set-based particle swarm optimization method for discrete optimization problems. IEEE Trans Evol Comput 14(2):278–300CrossRefGoogle Scholar
  108. 108.
    Chu X, Niu B, Liang JJ, Lu Q (2016) An orthogonal-design hybrid particle swarm optimiser with application to capacitated facility location problem. Int J Bioinspired Comput 8(5):268–285CrossRefGoogle Scholar
  109. 109.
    Chu X, Chen J, Cai F, Li L, Qin Q (2018) Adaptive brainstorm optimisation with multiple strategies. Memet Comput. Google Scholar
  110. 110.
    Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014CrossRefGoogle Scholar
  111. 111.
    Hossain MA, Ferdous I (2015) Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. Rob Auton Syst 64:137–141CrossRefGoogle Scholar
  112. 112.
    Chu X, Xu S, Cai F, Chen J, Qin Q (2018) An efficient auction mechanism for regional logistics synchronization. J Intell Manuf. Google Scholar
  113. 113.
    Li JQ, Pan QK (2015) Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Inf Sci 316:487–502CrossRefGoogle Scholar
  114. 114.
    Li XD, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16(2):210–224CrossRefGoogle Scholar
  115. 115.
    Nickabadi A, Ebadzadeh MM, Safabakhsh R (2012) A competitive clustering particle swarm optimizer for dynamic optimization problems. Swarm Intell 6(3):177–206CrossRefGoogle Scholar
  116. 116.
    Yazdani D, Nasiri B, Sepas-Moghaddam A, Meybodi MR (2013) A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization. Appl Soft Comput 13(4):2144–2158CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2018

Authors and Affiliations

  • Xianghua Chu
    • 1
    • 2
  • Teresa Wu
    • 3
  • Jeffery D. Weir
    • 4
  • Yuhui Shi
    • 5
  • Ben Niu
    • 1
    • 2
  • Li Li
    • 1
    • 2
    Email author
  1. 1.College of ManagementShenzhen UniversityShenzhenChina
  2. 2.Institute of Big Data Intelligent Management and DecisionShenzhen UniversityShenzhenChina
  3. 3.School of Computing, Informatics, Decision Systems EngineeringArizona State UniversityTempeUSA
  4. 4.School of Engineering and ManagementAir Force Institute of TechnologyWright Patterson AFBUSA
  5. 5.Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhenChina

Personalised recommendations