Neural Computing and Applications

, Volume 31, Issue 11, pp 6925–6932 | Cite as

Motor imagery tasks-based EEG signals classification using tunable-Q wavelet transform

  • Sachin TaranEmail author
  • Varun Bajaj
Original Article


Motor imagery (MI) tasks-based brain–computer interface (BCI) system finds applications for disabled people to communicate with surrounding. The BCI system reliability is relied on how well the different MI tasks are assessed and identified. Electroencephalogram (EEG) recordings provide a noninvasive way for imaging of MI tasks in BCI system. In this framework, tunable-Q wavelet transform (TQWT)-based feature extraction method is proposed for the classification of different MI tasks EEG signals. The TQWT parameters are tuned for the decomposition of EEG signal into sub-bands. Time domain measures of sub-bands are considered as features for MI tasks EEG signals. The TQWT-based features are tested on least-squares support vector machine classifier for the classification of right-hand and right-foot MI tasks. The proposed method provides 96.89% MI tasks classification accuracy, which is the highest as compared to other existing same data set methods. The suggested method can be used for identification of MI tasks in a BCI system designed for controlling robotic arm and wheel chairs, etc.


Electroencephalogram (EEG) signal Brain–computer interface system Tunable-Q wavelet transform Least-squares support vector machine 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Neuper C, Müller GR, Kübler A, Birbaumer N, Pfurtscheller G (2003) Clinical application of an EEG-based brain–computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol 114(3):399–409CrossRefGoogle Scholar
  2. 2.
    Kauhanen L, Nykopp T, Lehtonen J, Jylanki P, Heikkonen J, Rantanen P, Alaranta H, Sams M (2006) EEG and MEG brain–computer interface for tetraplegic patients. IEEE Trans Neural Syst Rehabil Eng 14(2):190–3CrossRefGoogle Scholar
  3. 3.
    Ahangi A, Karamnejad M, Mohammadi N, Ebrahimpour R, Bagheri N (2013) Multiple classifier system for EEG signal classification with application to brain–computer interfaces. Neural Comput Appl 23(5):1319–27CrossRefGoogle Scholar
  4. 4.
    Hassan AR, Subasi A (2016) Automatic identification of epileptic seizures from EEG signals using linear programming boosting. Comput Methods Programs Biomed 1(136):65–77CrossRefGoogle Scholar
  5. 5.
    Bashar SK, Hassan AR, Bhuiyan MI (2015) Motor imagery movements classification using multivariate EMD and short time Fourier transform. In: India conference (INDICON), annual IEEE, pp 1–6Google Scholar
  6. 6.
    Kevric J, Subasi A (2017) Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Process Control 1(31):398–406CrossRefGoogle Scholar
  7. 7.
    Bashar SK, Hassan AR, Bhuiyan MI (2015) Identification of motor imagery movements from EEG signals using dual tree complex wavelet transform. In: Advances in computing, communications and informatics (ICACCI), IEEE international conference, pp 290–296Google Scholar
  8. 8.
    Hsu WY, Sun YN (2009) EEG-based motor imagery analysis using weighted wavelet transform features. J Neurosci Methods 176(2):310–8CrossRefGoogle Scholar
  9. 9.
    Taran S, Bajaj V, Sharma D, Siuly S, Sengur A (2018) Features based on analytic IMF for classifying motor imagery EEG signals in BCI applications. Measurement 1(116):68–76CrossRefGoogle Scholar
  10. 10.
    Siuly S, Li Y (2012) Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 20(4):526–38CrossRefGoogle Scholar
  11. 11.
    Siuly S, Wang H, Zhang Y (2016) Detection of motor imagery EEG signals employing Naïve Bayes based learning process. Measurement 1(86):148–58CrossRefGoogle Scholar
  12. 12.
    Burke DP, Kelly SP, de Chazal P, Reilly RB, Finucane C (2005) A parametric feature extraction and classification strategy for brain–computer interfacing. IEEE Trans Neural Syst Rehabil Eng 13(1):12–7CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Wang Y, Zhou G, Jin J, Wang B, Wang X, Cichocki A (2018) Multi-kernel extreme learning machine for EEG classification in brain–computer interfaces. Expert Syst Appl 15(96):302–10CrossRefGoogle Scholar
  14. 14.
    Hortal E, Planelles D, Costa A, Iáñez E, Úbeda A, Azorín JM, Fernández E (2015) SVM-based Brain-Machine Interface for controlling a robot arm through four mental tasks. Neurocomputing 3(151):116–21CrossRefGoogle Scholar
  15. 15.
    Hortal E, Úbeda A, Iánez E, Azorin JM (2014) Control of a 2 DoF robot using a brain–machine interface. Comput Methods Programs Biomed 116(2):169–76CrossRefGoogle Scholar
  16. 16.
    Hortal E, Iáñez E, Úbeda A, Perez-Vidal C, Azorín JM (2015) Combining a brain-machine interface and an electrooculography interface to perform pick and place tasks with a robotic arm. Robot Auton Syst 72:181–188CrossRefGoogle Scholar
  17. 17.
    Mo H, Zhao Y (2016) Motor imagery electroencephalograph classification based on optimized support vector machine by magnetic bacteria optimization algorithm. Neural Process Lett 44(1):185–97CrossRefGoogle Scholar
  18. 18.
    Zhang R, Xu P, Guo L, Zhang Y, Li P, Yao D (2013) Z-score linear discriminant analysis for EEG based brain–computer interfaces. PLoS ONE 8(9):e74433CrossRefGoogle Scholar
  19. 19.
    Li D, Zhang H, Khan MS, Mi F (2018) A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition. Biomed Signal Process Control 31(41):222–32CrossRefGoogle Scholar
  20. 20.
    Lu H, Eng HL, Guan C, Plataniotis KN, Venetsanopoulos AN (2010) Regularized common spatial pattern with aggregation for EEG classification in small-sample setting. IEEE Trans Biomed Eng 57(12):2936–2946CrossRefGoogle Scholar
  21. 21.
    Hassan AR (2016) Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting. Biomed Signal Process Control 1(29):22–30CrossRefGoogle Scholar
  22. 22.
    Hassan AR, Haque MA (2017) An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting. Neurocomputing 26(235):122–130CrossRefGoogle Scholar
  23. 23.
    Hassan AR, Bhuiyan MI (2016) A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features. J Neurosci Methods 15(271):107–18CrossRefGoogle Scholar
  24. 24.
    Hassan AR, Subasi A (2017) A decision support system for automated identification of sleep stages from single-channel EEG signals. Knowl Based Syst 15(128):115–24CrossRefGoogle Scholar
  25. 25.
    Hassan AR, Bhuiyan MI (2017) An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting. Neurocomputing 5(219):76–87CrossRefGoogle Scholar
  26. 26.
    Hassan AR, Siuly S, Zhang Y (2016) Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput Methods Programs Biomed 1(137):247–59CrossRefGoogle Scholar
  27. 27.
    Patidar S, Panigrahi T (2017) Detection of epileptic seizure using Kraskov entropy applied on tunable-Q wavelet transform of EEG signals. Biomed Signal Process Control 34:74–80CrossRefGoogle Scholar
  28. 28.
    Li Y, Liang X, Xu M, Huang W (2017) Early fault feature extraction of rolling bearing based on ICD and tunable Q-factor wavelet transform. Mech Syst Signal Process 86:204–23CrossRefGoogle Scholar
  29. 29.
    Selesnick IW (2011) Wavelet transform with tunable Q-factor. IEEE Trans Signal Process 59(8):3560–3575MathSciNetCrossRefGoogle Scholar
  30. 30.
    Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, Pfurtscheller G, Millan JR, Schroder M, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159CrossRefGoogle Scholar
  31. 31.
    Dornhege G, Blankertz B, Curio G, Muller KR (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans Biomed Eng 51(6):993–1002CrossRefGoogle Scholar
  32. 32.
    Mehmood RM, Du R, Lee HJ (2017) Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors. IEEE Access 5:14797–806CrossRefGoogle Scholar
  33. 33.
    Wang X, Zheng Y, Zhao Z, Wang J (2015) Bearing fault diagnosis based on statistical locally linear embedding. Sensors 15(7):16225–47CrossRefGoogle Scholar
  34. 34.
    Taran S, Bajaj V, Siuly S (2017) An optimum allocation sampling based feature extraction scheme for distinguishing seizure and seizure-free EEG signals. Health Inf Sci Syst 5(1):7CrossRefGoogle Scholar
  35. 35.
    Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300CrossRefGoogle Scholar
  36. 36.
    Suykens JA, Lukas L, Vandewalle J (2000) Sparse approximation using least squares support vector machines. In: The IEEE international symposium on circuits and systems, proceedings, ISCAS 2000 Geneva, vol 2 pp 757–760Google Scholar
  37. 37.
    Zavar M, Rahati S, Akbarzadeh-T MR, Ghasemifard H (2011) Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection. Expert Syst Appl 38(9):10751–10758CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2018

Authors and Affiliations

  1. 1.Discipline of Electronics and Communication EngineeringPDPM Indian Institute of Information Technology, Design and Manufacturing JabalpurJabalpurIndia

Personalised recommendations