Neural Computing and Applications

, Volume 31, Issue 7, pp 2407–2413 | Cite as

A hybrid computational approach for Jeffery–Hamel flow in non-parallel walls

  • Jagdev SinghEmail author
  • M. M. Rashidi
  • Sushila
  • Devendra Kumar
Original Article


The key goal of this article is to present an efficient hybrid computational technique, namely homotopy analysis transform method (HATM), to investigate Jeffery–Hamel flow. The HATM is an innovative and efficient amalgamation of homotopy analysis technique, standard Laplace transform scheme and homotopy polynomials. The effect of Reynolds number on velocity profile is studied graphically. The obtained results are compared with existing results and it is noticed that the outcomes are in an excellent agreement. The outcomes of the suggested method reveal that the technique is easy to handle and computationally very fantastic.


Jeffery–Hamel flow Homotopy analysis transform method Fluid mechanics Nonlinear equation 

List of symbols


Pressure term


Fluid density


Coefficient of kinematic viscosity

\(u(r,\theta )\)

Radial velocity


Radial coordinate


Angular coordinate


Reynolds number


Steep angle


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.


  1. 1.
    Jeffery GB (1995) The two-dimensional steady motion of a viscous fluid. Philos Mag 6:455–465zbMATHGoogle Scholar
  2. 2.
    Hamel G (1916) Spiralformige Bewgungen, Zaher Flussigkeiten. Jahresbericht der Deutschen. Math Vereinigung 25:34–60zbMATHGoogle Scholar
  3. 3.
    Rosenhead L (1940) The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc R Soc A 175:436–467zbMATHCrossRefGoogle Scholar
  4. 4.
    Batchelor K (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  5. 5.
    White FM (1991) Viscous fluid flow. McGraw-Hill, New YorkGoogle Scholar
  6. 6.
    Hamadiche M, Scott J, Jeandel D (1994) Temporal stability of Jeffery–Hamel flow. J Fluid Mech 268:71–88zbMATHCrossRefGoogle Scholar
  7. 7.
    Fraenkel LE (1962) Laminar flow in symmetrical channels with slightly curved walls. I: on the Jeffery–Hamel solution for flow between plane walls. Proc R Soc A 267:119–138MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Makinde OD, Mhone PY (2006) Hermite-Pade’ approximation approach to MHD Jeffery–Hamel flows. Appl Math Comput 181:966–972zbMATHGoogle Scholar
  9. 9.
    Joneidi AA, Domairry G, Babaelahi M (2010) Three analytical methods applied to Jeffery–Hamel flow. Commun Nonlinear Sci Numer Simul 15:3423–3434zbMATHCrossRefGoogle Scholar
  10. 10.
    Esmali Q, Ramiar A, Alizadeh E, Ganji DD (2008) An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method. Phys Lett A 372:3434–3439zbMATHCrossRefGoogle Scholar
  11. 11.
    Inc M, Akgül A, Kilicman A (2013) A new application of the reproducing kernel Hilbert space method to solve MHD Jeffery–Hamel flows problems in nonparallel walls. Abstr Appl Anal Article ID 239454, 12 ppGoogle Scholar
  12. 12.
    Azimi M, Azimi A (2013) Study on effect of semi-angle between non-parallel walls on magneto hydro dynamic Jeffery Hamel flow using semi-analytical approach. J Chem Eng Mater Sci 4(5):67–71CrossRefGoogle Scholar
  13. 13.
    Sheikholeslami M, Mollabasi H, Ganji DD (2015) Analytical investigation of MHD Jeffery–Hamel nanofluid flow in non-parallel walls. Int J Nanosci Nanotechnol 11(4):241–248Google Scholar
  14. 14.
    Sushila, Singh J, Shishodia YS (2014) A modified analytical technique for Jeffery–Hamel flow using sumudu transform. J Assoc Arab Univ Basic Appl Sci 16:11–15Google Scholar
  15. 15.
    Sheikholeslami M, Shehzad SA (2017) Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf 106:1261–1269CrossRefGoogle Scholar
  16. 16.
    Sheikholeslami M, Shehzad SA (2017) Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf 109:82–92CrossRefGoogle Scholar
  17. 17.
    Rauf A, Shehzad SA, Hayat T, Meraj MA, Alsaedi A (2017) MHD stagnation point flow of micro nanofluid towards a shrinking sheet with convective and zero mass flux conditions. Bull Pol Acad Sci 65:155–162Google Scholar
  18. 18.
    Sadiq MA, Hayat T (2017) Darcy–Forchheimer stretched flow of MHD Maxwell material with heterogeneous and homogeneous reactions. Neural Comput Appl. doi: 10.1007/s00521-017-3037-1 CrossRefGoogle Scholar
  19. 19.
    Bilal Ashraf M, Hayat T, Shehzad SA, Ahmed B (2017) Thermophoresis and MHD mixed convection three-dimensional flow of viscoelastic fluid with Soret and Dufour effects. Neural Comput Appl. doi: 10.1007/s00521-017-2997-5 CrossRefGoogle Scholar
  20. 20.
    He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 17:257–262MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Bulut H, Baskonus HM (2010) A study on the numerical solution of the third-order dispersive equation with homotopy perturbation method. e-J New World Sci Acad 5(1):18–30Google Scholar
  22. 22.
    Bulut H, Baskonus HM (2010) Numerical solution study on KDV, the Burgers and the K(2,2) equations with HPM. J Adv Res Differ Equ 2(1):73–86Google Scholar
  23. 23.
    Bulut H, Baskonus HM (2010) Numerical solution study on the nonlinear damped generalized regularized long-wave (DGRLW) with homotopy perturbation method. Appl Math Sci 4(65):3211–3217MathSciNetzbMATHGoogle Scholar
  24. 24.
    Singh J, Kumar D, Swroop R (2016) Numerical solution of time- and space-fractional coupled Burgers equations via homotopy algorithm. Alexandria Eng J 55(2):1753–1763CrossRefGoogle Scholar
  25. 25.
    Singh J, Kumar D, Swroop R, Kumar S (2017) An efficient computational approach for time-fractional Rosenau–Hyman equation. Neural Comput Appl. doi: 10.1007/s00521-017-2909-8 CrossRefGoogle Scholar
  26. 26.
    Liao SJ (2003) Beyond perturbation: introduction to homotopy analysis method. CRC Press, Boca RatonCrossRefGoogle Scholar
  27. 27.
    Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513MathSciNetzbMATHGoogle Scholar
  28. 28.
    Liao SJ (2005) A new branch of solutions of boundary-layer flows over an impermeable stretched plane. Int J Heat Mass Transf 48(12):2529–2539zbMATHCrossRefGoogle Scholar
  29. 29.
    Rashidi MM, Rastegar MT, Asadi M, Anwar Bég O (2012) A study of non-newtonian flow and heat transfer over a non-isothermal wedge using the homotopy analysis method. Chem Eng Commun 199:231–256CrossRefGoogle Scholar
  30. 30.
    Rashidi MM, Hassan H (2014) An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method. Int J Numer Methods Heat Fluid Flow 24(2):419–437MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Basiri Parsa A, Rashidi MM, Anwar Bég O, Sadri SM (2013) Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods. Comput Biol Med 43(9):1142–1153CrossRefGoogle Scholar
  32. 32.
    Abolbashari MH, Freidoonimehr N, Nazari F, Rashidi MM (2014) Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol 267:256–267CrossRefGoogle Scholar
  33. 33.
    Rashidi MM, Bagheric S, Momoniatd E, Freidoonimehre N (2017) Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Eng J 8:77–85CrossRefGoogle Scholar
  34. 34.
    Rashidi MM, Rostami B, Freidoonimehr N, Abbasbandy S (2014) Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng J 5(3):901–912CrossRefGoogle Scholar
  35. 35.
    Rashidi MM, Momoniat E, Rostami B (2012) Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving stretching surface by homotopy analysis method with two auxiliary parameters. J Appl Math Article ID 780415,19 ppGoogle Scholar
  36. 36.
    Sheikh M, Abbas Z (2015) Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species. J Magn Magn Mater 396(15):204–213CrossRefGoogle Scholar
  37. 37.
    Hayat T, Nisar Z, Ahmad B, Yasmin H (2015) Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating. J Magn Magn Mater 395(1):48–58Google Scholar
  38. 38.
    Hayat T, Imtiaz M, Alsaedi A, Kutbi MA (2015) MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. Magn Magn Mater 396(15):31–37CrossRefGoogle Scholar
  39. 39.
    Mehmood R, Nadeem S, Masood S (2016) Effects of transverse magnetic field on a rotating micropolar fluid between parallel plates with heat transfer. Magn Magn Mater 401(1):1006–1014CrossRefGoogle Scholar
  40. 40.
    Kumar S, Rashidi MM (2014) New analytical method for gas dynamics equation arising in shock fronts. Comput Phys Commun 185(7):1947–1954MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Kumar D, Singh J, Kumar S, Sushila, Singh BP (2015) Numerical computation of nonlinear shock wave equation of fractional order. Ain Shams Eng 6(2):605–611CrossRefGoogle Scholar
  42. 42.
    Kumar D, Singh J, Kumar S, Sushila (2014) Numerical computation of Klein–Gordon equations arising in quantum field theory by using homotopy analysis transform method. Alexandria Eng J 53(2):469–474CrossRefGoogle Scholar
  43. 43.
    Rashidi MM, Vishnu Ganesh N, Abdul Hakeem AK, Gang B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liquids 198:234–238CrossRefGoogle Scholar
  44. 44.
    Freidoonimehr N, Rashidi MM, Mahmud S (2015) Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Therm Sci 87:136–145CrossRefGoogle Scholar
  45. 45.
    Khan M, Gondal MA, Hussain I, Karimi Vanani S (2012) A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on semi infinite domain. Math Comput Model 55:1143–1150MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Salah A, Khan M, Gondal MA (2013) A novel solution procedure for fuzzy fractional heat equations by homotopy analysis transform method. Neural Comput Appl 23(2):269–271CrossRefGoogle Scholar
  47. 47.
    Kumar D, Singh J, Kumar S (2015) Analytical modeling for fractional multi-dimensional diffusion equations by using Laplace transform. Commun Numer Anal 1:16–29MathSciNetCrossRefGoogle Scholar
  48. 48.
    Ramswroop SJ, Kumar D (2015) Numerical computation of fractional Lotka–Volterra equation arising in biological systems. Nonlinear Eng 4(2):117–125CrossRefGoogle Scholar
  49. 49.
    Odibat Z, Bataineh SA (2014) An adaptation of homotopy analysis method for reliable 337 treatment of strongly nonlinear problems: construction of homotopy polynomials. Math Methods Appl Sci. doi: 10.1002/mma.3136 zbMATHCrossRefGoogle Scholar
  50. 50.
    Schlichting H (2000) Boundary-layer theory. McGraw Hill, New YorkzbMATHCrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  • Jagdev Singh
    • 1
    Email author
  • M. M. Rashidi
    • 2
  • Sushila
    • 3
  • Devendra Kumar
    • 1
  1. 1.Department of MathematicsJECRC UniversityJaipurIndia
  2. 2.Department of Civil EngineeringUniversity of BirminghamBirminghamUK
  3. 3.Department of PhysicsVivekananda Global UniversityJaipurIndia

Personalised recommendations