Neural Computing and Applications

, Volume 31, Supplement 2, pp 1317–1329 | Cite as

Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms

  • Luís A. M. Pereira
  • João P. PapaEmail author
  • André L. V. Coelho
  • Clodoaldo A. M. Lima
  • Danillo R. Pereira
  • Victor Hugo C. de Albuquerque
Original Article


Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental for the proper diagnosis of this mental condition. This work presents a systematic assessment of the performance of different variants of the binary magnetic optimization algorithm (BMOA), two of which are introduced here, while serving as feature selectors for epileptic EEG signal identification. In this context, the optimum-path forest classifier was adopted as a classification model, whereas different wavelet families were considered for EEG feature extraction. In order to compare the performance of the improved BMOA variants against the traditional one, as well as other metaheuristic techniques, namely particle swarm optimization, binary bat algorithm, and genetic algorithm, we employed a well-known EEG benchmark dataset composed of five classes of EEG signals (two of which comprising normal patients with eyes open or closed, and the remaining comprising ill patients with different levels of epilepsy). Overall, the results evidenced the robustness of the proposed BMOA and its variants.


Feature selection Epilepsy EEG signal classification Magnetic optimization algorithm Metaheuristics Optimum-path forest 



LAMP and JPP are grateful to FAPESP Grants #2011/14094-1, #2009/16206-1, and #2014/16250-9, respectively, and also CNPq Grants #303182/2011-3, #470571/2013-6, and #306166/2014-3. The ALVC and CAML also acknowledge the sponsorship from CNPq via Grants #475406/2010-9, #304603/2012-0, 308816/2012-9, and #303182/2011-3. VHCA acknowledges CNPq for the Grants #470501/2013-8 and #301928/2014-2.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.


  1. 1.
    Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E Stat Nonlinear Soft Matter Phys 64:061907-1–061907-6CrossRefGoogle Scholar
  2. 2.
    Andrzejak RG, Widman G, Lehnertz K, Rieke C, David P, Elger CE (2001) The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy. Epilepsy Res 44:129–140CrossRefGoogle Scholar
  3. 3.
    Browne TR, Holmes GL (2003) Handbook of Epilepsy. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  4. 4.
    Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349:1257–1266CrossRefGoogle Scholar
  5. 5.
    Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetzbMATHGoogle Scholar
  6. 6.
    Firpi HA, Goodman E (2004) Swarmed feature selection. In: Proceedings of the 33rd applied imagery pattern recognition workshop, IEEE Computer Society, Washington, DC, USA, pp 112–118Google Scholar
  7. 7.
    Gandhi T, Panigrahi BK, Anan S (2011) A comparative study of wavelet families for EEG signal classification. Neurocomputing 74(17):3051–3057CrossRefGoogle Scholar
  8. 8.
    Gotman J (1982) Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol 54:530–540CrossRefGoogle Scholar
  9. 9.
    Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182zbMATHGoogle Scholar
  10. 10.
    Guyon I, Gunn S, Nikravesh M, Zadeh LA (2006) Feature extraction: foundations and applications. Springer, BerlinCrossRefzbMATHGoogle Scholar
  11. 11.
    Hazarika N, Chen JZ, Tsoi AC, Sergejew A (1997) Classification of EEG signals using the wavelet transform. Signal Process 59:61–72CrossRefzbMATHGoogle Scholar
  12. 12.
    Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3):267–289CrossRefzbMATHGoogle Scholar
  13. 13.
    Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, CambridgezbMATHGoogle Scholar
  14. 14.
    Lima CAM, Coelho ALV (2011) Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study. Artif Intell Med 53:83–95CrossRefGoogle Scholar
  15. 15.
    Lima CAM, Coelho ALV, Chagas S (2009) Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines. Expert Syst Appl 36:10054–10059CrossRefGoogle Scholar
  16. 16.
    Lima CAM, Coelho ALV, Eisencraft M (2010) Tackling EEG signal classification with least squares support vector machines: a sensitivity analysis study. Comput Biol Med 40:705–714CrossRefGoogle Scholar
  17. 17.
    Lin S-W, Ying K-C, Chen S-C, Lee Z-J (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35(4):1817–1824CrossRefGoogle Scholar
  18. 18.
    Mirjalili S, Mohd Hashim SZ (2011) BMOA: binary magnetic optimization algorithm. In: 3rd IEEE international conference on machine learning and computing, Singapore, vol 1, pp 201–206Google Scholar
  19. 19.
    Nakamura RYM, Pereira LAM, Costa KA, Rodrigues D, Papa JP, Yang X-S (2012) BBA: a binary bat algorithm for feature selection. In: Proceedings of the XXV SIBGRAPI—conference on graphics, patterns and images, pp 291–297Google Scholar
  20. 20.
    Nemenyi P (1963) Distribution-free multiple comparisons. Princeton University, PrincetonGoogle Scholar
  21. 21.
    Nunes TM, Coelho ALV, Lima CAM, Papa JP, de Albuquerque VHC (2014) EEG signal classification for epilepsy diagnosis via optimum path forest—a systematic assessment. Neurocomputing 136:103–123CrossRefGoogle Scholar
  22. 22.
    Ocak H (2008) Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process 88:1858–1867CrossRefzbMATHGoogle Scholar
  23. 23.
    Papa JP, Falcão AX, Albuquerque VHC, Tavares JMRS (2012) Efficient supervised optimum-path forest classification for large datasets. Pattern Recognit 45(1):512–520CrossRefGoogle Scholar
  24. 24.
    Papa JP, Falcão AX, Suzuki CTN (2009) Supervised pattern classification based on optimum-path forest. Int J Imaging Syst Technol 19(2):120–131CrossRefGoogle Scholar
  25. 25.
    Rodrigues D, Pereira LAM, Nakamura RYM, C KAP, Yang X-S, Souza AN, Papa JP (2014) A wrapper approach for feature selection based on bat algorithm and optimum-path forest. Expert Syst Appl 41(5):2250–2258CrossRefGoogle Scholar
  26. 26.
    Subasi A (2005) Epileptic seizure detection using dynamic wavelet network. Expert Syst Appl 28:701–711CrossRefGoogle Scholar
  27. 27.
    Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084–1093CrossRefGoogle Scholar
  28. 28.
    Subasi A, Ercelebi E (2005) Classification of EEG signals using neural network and logistic regression. Comput Methods Programs Biomed 78:87–99CrossRefzbMATHGoogle Scholar
  29. 29.
    Tang YY (2009) Wavelet Theory Approach to Pattern Recognition. World Scientific Publishing, SingaporeCrossRefzbMATHGoogle Scholar
  30. 30.
    Tayarani MH, Akbarzadeh-Totonchi MR (2008) Magnetic optimization algorithms a new synthesis. In: IEEE congress on evolutionary computation, IEEE, pp 2659–2664Google Scholar
  31. 31.
    Tzallas AT, Tsipouras MG, Fotiadis DI (2007) Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci 2007:80510-1–80510-13CrossRefGoogle Scholar
  32. 32.
    Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed 13:703–710CrossRefGoogle Scholar
  33. 33.
    Übeyli ED (2008) Wavelet/mixture of experts network structure for EEG signals classification. Expert Syst Appl 34:1954–1962CrossRefGoogle Scholar
  34. 34.
    Übeyli ED (2009) Combined neural network model employing wavelet coefficients for EEG signals classification. Digit Signal Process 19:297–308CrossRefGoogle Scholar
  35. 35.
    Übeyli ED (2009) Statistics over features: EEG signals analysis. Comput Biol Med 39:733–741CrossRefGoogle Scholar
  36. 36.
    Walnut DF (2004) An introduction to wavelet analysis. Birkhäuser, BaselCrossRefzbMATHGoogle Scholar
  37. 37.
    Willi-Hans S (2011) The nonlinear workbook, 5th edn. World Scientific, SingaporezbMATHGoogle Scholar
  38. 38.
    Yang H, Du Q (2011) Particle swarm optimization-based dimensionality reduction for hyperspectral image classification. In: IEEE international geoscience and remote sensing symposium, pp 2357–2360Google Scholar
  39. 39.
    Yusta SC (2009) Different metaheuristic strategies to solve the feature selection problem. Pattern Recognit Lett 30:525–534CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  1. 1.Instituto de ComputaçãoUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Departamento de ComputaçãoUNESP - Univ Estadual PaulistaBauruBrazil
  3. 3.Programa de Pós-Graduação em Informática AplicadaUniversidade de FortalezaFortalezaBrazil
  4. 4.Escola de Artes, Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil

Personalised recommendations