Advertisement

Neural Computing and Applications

, Volume 31, Supplement 2, pp 1211–1223 | Cite as

Optimum section selection procedure for horizontal axis tidal stream turbines

  • Mojtaba TahaniEmail author
  • Narek BabayanEmail author
Original Article

Abstract

Stochastic behavior of renewable energy sources forces designers to optimize the energy converters for the purpose of capturing the maximum amount of available energy. The performance of horizontal axis wind and tidal turbines mainly depends on the geometrical properties such as chord and twist distributions and also the types of sections which are utilized along the blade. The purpose of presented paper is introducing a procedure which can be utilized in order to select the optimum sections for horizontal axis tidal turbines for the purpose of increasing the turbine performance. The presented procedure also can be applied for horizontal axis wind turbines. For the purpose of evaluating the performance of the proposed method, two design types (chord and twist distributions) of tidal turbines are selected as case studies. Power coefficient is considered as objective function, and three types of hydrofoils namely NACA63-8xx, NACA44xx, and RISO-A1-xx are selected as candidate solutions. A blade element momentum theory model is used for calculating the power coefficient. The discrete ant colony optimization algorithm is selected as optimization tool. The results indicate that the utilization of the proposed method will considerably decrease the required process time for obtaining the optimum sections across the blade span, and also it is shown that using different types of sections across the blade span can increase the power coefficient of the turbine. The importance of the proposed method will be significant when various types of hydrofoils and airfoils can be considered as candidate sections across the blade span.

Keywords

Turbine Blade section BEM Ant colony optimization 

List of symbols

AOA

Angle of attack (°)

B

Number of blades

CD

Drag coefficient

CL

Lift coefficient

CP

Power coefficient

Q

Torque (N.m)

R

Radius (m)

TSR

Tip speed ratio

U

Free stream velocity (m/s)

Vtotal

Relative velocity (m/s)

a

Axial induction factor/degree of importance of pheromone

\(a^{\prime}\)

Tangential induction factor

b

A control parameter in increasing pheromone intensity

c

Chord (m)/evaporation rate controller

f

Tip loss factor

r

Local radius (m)

Ω

Rotational speed (rad/s)

λ

Tip speed ratio

Ρ

Density (kg/m3)

σ

Solidity

τ

Pheromone intensity

ϕ

Local inflow angle (°)

Subscripts and superscripts

r

Local property

t

Tip

h

Hub

lay

Layer

max

Maximum

min

Minimum

sol

Solution

\('\)

Local property

Notes

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interests.

References

  1. 1.
    Batten WMJ, Bahaj AS, Molland AF, Chaplin JR, Sustainable Energy Research Group (2007) Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Eng 34:1013–1020. doi: 10.1016/j.oceaneng.2006.04.008 CrossRefGoogle Scholar
  2. 2.
    Goundar JN, Ahmed MR (2013) Design of a horizontal axis tidal current turbine. Appl Energy 111:161–174. doi: 10.1016/j.apenergy.2013.04.064 CrossRefGoogle Scholar
  3. 3.
    Bahaj AS, Molland AF, Chaplin JR, Batten WMJ (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew Energy 32:407–426. doi: 10.1016/j.renene.2006.01.012 CrossRefGoogle Scholar
  4. 4.
    Mason-Jones A, O’Doherty DM, Morris CE, O’Doherty T, Byrne CB, Prickett PW, Grosvenor RI, Owen I, Tedds S, Poole RJ (2012) Non-dimensional scaling of tidal stream turbines. Energy 44:820–829. doi: 10.1016/j.energy.2012.05.010 CrossRefGoogle Scholar
  5. 5.
    Lewis M, Neill SP, Robins PE, Hashemi MR (2015) Resource assessment for future generations of tidal-stream energy arrays. Energy 83:403–415. doi: 10.1016/j.energy.2015.02.038 CrossRefGoogle Scholar
  6. 6.
    Sanchez M, Carballo R, Ramos V, Iglesias G (2014) Energy production from tidal currents in an estuary: a comparative study of floating and bottom-fixed turbines. Energy 77:802–811. doi: 10.1016/j.energy.2014.09.053 CrossRefGoogle Scholar
  7. 7.
    Vazquez A, Iglesias G (2015) LCOE (levelised cost of energy) mapping: a new geospatial tool for tidal stream energy. Energy 91:192–201. doi: 10.1016/j.energy.2015.08.012 CrossRefGoogle Scholar
  8. 8.
    Lam WH, Chen L, Hashim R (2015) Analytical wake model of tidal current turbine. Energy 79:512–521. doi: 10.1016/j.energy.2014.11.047 CrossRefGoogle Scholar
  9. 9.
    Chen L, Lam WH (2014) Slipstream between marine current turbine and seabed. Energy 68:801–810. doi: 10.1016/j.energy.2014.02.083 CrossRefGoogle Scholar
  10. 10.
    Batten WMJ, Bahaj AS, Molland AF, Chaplin JR (2008) The prediction of the hydrodynamic performance of marine current turbines. Renew Energy 33:1085–1096. doi: 10.1016/j.renene.2007.05.043 CrossRefGoogle Scholar
  11. 11.
    Mycek P, Gaurier B, Germain G, Pinon G, Rivoalen E (2014) Experimental study of the turbulence intensity effects on marine current turbines behavior. Part I: one single turbine. Renew Energy 66:729–746. doi: 10.1016/j.renene.2013.12.036 CrossRefGoogle Scholar
  12. 12.
    Lee JH, Park S, Kim DH, Rhee SH, Kim MC (2012) Computational methods for performance analysis of horizontal axis tidal stream turbines. Appl Energy 98:512–523. doi: 10.1016/j.apenergy.2012.04.018 CrossRefGoogle Scholar
  13. 13.
    Wu B, Zhang X, Chen J, Xu M, Li S, Li G (2013) Design of high-efficient and universally applicable blades of tidal stream turbine. Energy 60:187–194. doi: 10.1016/j.energy.2013.07.061 CrossRefGoogle Scholar
  14. 14.
    Tahani M, Babayan N, Razi Astaraei F, Moghadam A (2015) Multi objective optimization of horizontal axis tidal current turbines, using Meta heuristics algorithms. Energy Convers Manag 103:487–498. doi: 10.1016/j.enconman.2015.06.086 CrossRefGoogle Scholar
  15. 15.
    Wang GG, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl. doi: 10.1007/s00521-015-1923-y Google Scholar
  16. 16.
    Mirjalili S (2015) Dragonfly algorithm: a new metahuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. doi: 10.1007/s00521-015-1920-1 Google Scholar
  17. 17.
    Fong S, Deb S, Yang XS (2015) A heuristic optimization method inspired by wolf preying behavior. Neural Comput Appl 26:1725–1738. doi: 10.1007/s00521-015-1836-9 CrossRefGoogle Scholar
  18. 18.
    Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25:1077–1097. doi: 10.1007/s00521-0.14-1597-x CrossRefGoogle Scholar
  19. 19.
    Saji Y, Riffi ME (2016) A novel discrete bat algorithm for solving the travelling salesman problem. Neural Comput Appl 27:1853–1866. doi: 10.1007/s00521-015-1978-9 CrossRefGoogle Scholar
  20. 20.
    Ahmadi P, Dincer I, Rosen MA (2013) Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multi generation energy system. Energy Convers Manag 79:282–300. doi: 10.1016/j.enconman.2013.07.049 Google Scholar
  21. 21.
    Ahmadi MH, Ahmadi MA, Mohammadi AH, Bayat R, Ashouri M, Fiedt M (2015) Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm. Energy Convers Manag 91:315–322. doi: 10.1016/j.enconman.2014.12.006 CrossRefGoogle Scholar
  22. 22.
    Ahmadi P, Dincer I, Rosen MA (2014) Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system. Energy 68:958–970. doi: 10.1016/j.energy.2014.01.085 CrossRefGoogle Scholar
  23. 23.
    Hajabdollahi H, Ganjehkaviri A, Jaafar MNM (2015) Thermo-economic optimization of RSORC (regenerative solar organic Rankine cycle) considering hourly analysis. Energy 87:369–380. doi: 10.1016/j.energy.2015.04.113 CrossRefGoogle Scholar
  24. 24.
    Hsieh YZ, Su MC (2016) A Q-learning-based swarm optimization algorithm for economic dispatch problem. Neural Comput Appl 27:2333–2350. doi: 10.1007/s00521-015-2070-1 CrossRefGoogle Scholar
  25. 25.
    Song R, Wei Q, Xiao W (2016) ADP-based optimal sensor scheduling for target tracking in energy harvesting wireless sensor networks. Neural Comput Appl 27:1543–1551. doi: 10.1007/s00521-015-1954-4 CrossRefGoogle Scholar
  26. 26.
    Tahani M, Babayan N, Pouyaei A (2015) Optimization of PV/Wind/Battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran. Energy Convers Manag 106:644–659. doi: 10.1016/j.enconman.2015.10.011 CrossRefGoogle Scholar
  27. 27.
    Tahani M, Babayan N, Mehrnia S, Shadmehri M (2016) A novel heuristic method for optimization of straight blade vertical axis wind turbine. Energy Convers Manag 127:461–476. doi: 10.1016/j.enconman.2016.08.094 CrossRefGoogle Scholar
  28. 28.
    Ahmed MR (2012) Blade sections for wind turbine and tidal current turbine applications-current status and future challenges. Int J Energy Res 36:829–844. doi: 10.1002/er.2912 CrossRefGoogle Scholar
  29. 29.
    Bertagnolio F, Sorensen N, Johansen J, Fuglsang P (2001) Wind turbine airfoil catalogue. Riso National Laboratory, RoskildeGoogle Scholar
  30. 30.
    Dorigo M, Maniezzo V, Colorni A (1996) The ant system optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26:29–41. doi: 10.1109/3477.484436 CrossRefGoogle Scholar
  31. 31.
    Rao SS (2009) Engineering optimization theory and practice. Wiley, Hoboken, New JerseyCrossRefGoogle Scholar
  32. 32.
    Batten WMJ, Bahaj AS, Molland AF, Chaplin JR (2006) Hydrodynamics of marine current turbines. Renew Energy 31:249–256. doi: 10.1016/j.renene.2005.08.020 CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  1. 1.Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran

Personalised recommendations