Advertisement

Neural Computing and Applications

, Volume 31, Supplement 2, pp 969–988 | Cite as

Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network

  • Yasmina Kellouche
  • Bakhta BoukhatemEmail author
  • Mohamed Ghrici
  • Arezki Tagnit-Hamou
Original Article
  • 179 Downloads

Abstract

Concrete carbonation is one of the main causes of corrosion of the reinforcement and consequently causing damage to the reinforced concrete structures. The progress of the carbonation front depends on many factors including mixture proportions and exposure conditions. Several carbonation prediction models including mathematical and analytical predictions are available. Most of these models, however, are based on simple regression equations and cannot predict or accurately reflect the various factors involved in concrete carbonation. The current published results in this issue are in conflict. In view of this, our research aims to apply an artificial neural network (ANN) approach for predicting the carbonation of fly-ash concrete taking into account the most influential parameters, including mixture proportions and exposure conditions. Six parameters were considered as inputs to the ANN model, covering, binder and fly-ash content, water-to-binder ratio, CO2 concentration, relative humidity, and time of exposure; one output is carbonation depth. The ANN model was prepared, trained, and tested with 300 datasets from experiments as well as past research. The performance of training, validation, and test sets shows a high correlation between the experimental and the ANN predicted values of the carbonation depth. In addition, the proposed prediction model was in good agreement with the experimental data in comparison with other model. This study concludes that the use of this model for numerical investigations on the parameters affecting the carbonation depth in fly-ash concrete is successful and provides scientific guidance for durability design.

Keywords

Carbonation depth Fly-ash Concrete Artificial neural network 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chen C, Habert G, Bouzidi Y, Jullien A (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Clean Prod 18:478–485CrossRefGoogle Scholar
  2. 2.
    Williams PJ, Biernacki JJ, Walker LR, Meyer HM, Rawn CJ, Bai J (2002) Microanalysis of alkali-activated fly ash CH pastes. Cem Concr Res 32(6):963–972CrossRefGoogle Scholar
  3. 3.
    Liu J, Tang K, Qiu Q, Pan D, Lei Z, Xing F (2014) Experimental investigation on pore structure characterization of concrete exposed to water and chlorides. Materials 7(9):6646–6659CrossRefGoogle Scholar
  4. 4.
    Naik TR, Singh SS, Hossain MM (1994) Permeability of concrete containing large amounts of fly ash. Cem Concr Res 24(5):913–922CrossRefGoogle Scholar
  5. 5.
    McCarthy M, Dhir R (2005) Development of high volume fly ash cements for use in concrete construction. Fuel 84(11):1423–1432CrossRefGoogle Scholar
  6. 6.
    Ho DWS, Lewis RK (1987) Carbonation of concrete and its prediction. Cem Concr Res 17(3):489–504CrossRefGoogle Scholar
  7. 7.
    Sulapha P, Wong SF, Wee TH, Swaddiwudhipong S (2003) Carbonation of concrete containing mineral admixtures. J Mater Civ Eng 15(2):134–143CrossRefGoogle Scholar
  8. 8.
    Sisomphon K, Franke L (2007) Carbonation rates of concretes containing high volume of pozzolanic materials. Cem Concr Res 37(12):1647–1653CrossRefGoogle Scholar
  9. 9.
    Lammertijn S, De Belie N (2008) Porosity gas permeability, carbonation and their interaction in high-volume fly ash concrete. Mag Concr Res 60(7):535–545CrossRefGoogle Scholar
  10. 10.
    Bouzoubaa N, Bilodeau A, Foo S (2010) Carbonation of fly ash concrete: laboratory and field data. Can J Civ Eng 37(12):1535–1549CrossRefGoogle Scholar
  11. 11.
    Khunthongkeaw J, Tangtermsirikula S, Leelawat T (2006) A study on carbonation depth prediction for fly ash concrete. Constr Build Mater 20(9):744–753CrossRefGoogle Scholar
  12. 12.
    Papadakis VG (2000) Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem Concr Res 30(2):291–299CrossRefGoogle Scholar
  13. 13.
    Atis CD (2003) Accelerated carbonation and testing of concrete made with fly ash. Constr Build Mater 17(3):147–152CrossRefGoogle Scholar
  14. 14.
    Khunthongkeaw J, Tangtermsirikul S (2005) Model for simulating carbonation of fly ash concrete. J Mater Civ Eng 17(12):570–578CrossRefGoogle Scholar
  15. 15.
    Kobayashi K, Uno Y (1990) Mechanism of carbonation of concrete. JSCE 1(1):139–151Google Scholar
  16. 16.
    Izumi I, Kita D, Maeda H (1986) Carbonation. Kibodang Publication, Japan, pp 35–88Google Scholar
  17. 17.
    Papadakis VG (1999) Effect of fly ash on Portland cement systems Part I. Low-calcium fly ash. Cem Concr Res 29(11):1727–1736CrossRefGoogle Scholar
  18. 18.
    Jiang L, Lin B, Cai Y (2000) A model for predicting carbonation of high volume concrete. Cem Concr Res 30(5):699–702CrossRefGoogle Scholar
  19. 19.
    Wang JZ, Ni HG, He JY (1999) The application of automatic acquisition of knowledge to mix design of concrete. Cem Concr Res 29(12):1875–1880CrossRefGoogle Scholar
  20. 20.
    Boukhatem B, Ghrici M, Kenai S, Tagnit-Hamou A (2011) Prediction of the efficiency of GGBFS in concrete using artificial neural networks. ACI Mater J 108(1):55–63Google Scholar
  21. 21.
    Boukhatem B, GhriciM Kenai S, Tagnit-HamouA Ziou D (2012) A system for predicting concrete properties using neural networks (NN) with principal component analysis (PCA) technique. Comput Concr 10(6):557–574CrossRefGoogle Scholar
  22. 22.
    Bellalia-Douma O, Boukhatem B, Ghrici M, Tagnit-Hamou A, Ziou D (2016) Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput Appl. doi: 10.1007/s00521-016-2368-7 Google Scholar
  23. 23.
    Stegemann JA, Buenfeld NR (2002) Prediction of unconfined compressive strength of cement paste with pure metal compound additions. Cem Concr Res 32(6):903–913CrossRefGoogle Scholar
  24. 24.
    Sarıdemir M, Billir T (2016) Modeling of elastic modulus of concrete containing fly ash by gene expression programming. In: Fourth international conference on sustainable construction materials and technologies. Las VegasGoogle Scholar
  25. 25.
    Billir T, Gencel O, Topçu IB (2016) Prediction of restrained shrinkage crack widths of slag mortar composites by Taakagi and Sugeno ANFIS models. Neural Comput Appl 27:2523–2536CrossRefGoogle Scholar
  26. 26.
    Yan L, Shengli Z, Cheng Y (2008) The forecast of carbonation depth of concrete based on RBF neural network. In: Second international symposium on intelligent information technology application, Shanghai, pp 544–548Google Scholar
  27. 27.
    Lu C, Liu R (2009) Predicting carbonation depth of prestressed concrete under different stress states using artificial neural network. Adv Artif Neural Syst 2009:193139-1–193139-8. doi: 10.1155/2009/193139 Google Scholar
  28. 28.
    Narui B, Guoli Y, Hui Z (2009) Prediction of concrete carbonization depth based on DE-BP neural network. In: Third international symposium on intelligent information technology application. Nanchang, China, pp 240–243Google Scholar
  29. 29.
    Kwon SJ, Song HW (2010) Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling. Cem Concr Res 40(1):119–127CrossRefGoogle Scholar
  30. 30.
    Daming L, Ditao N, Zhenping D (2014) Application of neural network for concrete carbonation depth prediction. In: 4th International conference on the durability of concrete structures. Purdue University, West Lafayette, pp 66–71Google Scholar
  31. 31.
    Haykin S (2009) Neural networks and learning machines, 3rd edn. Pearson Education Inc, Upper Saddle RiverGoogle Scholar
  32. 32.
    Jain A, Mao J, Mohiuddin K (1996) Artificial neural networks: a tutorial. IEEE Comput 29(3):31–44CrossRefGoogle Scholar
  33. 33.
    Jiang L, Liu Z, Ye Y (2004) Durability of concrete incorporating large volumes of low-quality fly ash. Cem Concr Res 34(8):1467–1469CrossRefGoogle Scholar
  34. 34.
    Burden D (2006) The durability of concrete containing high levels of fly ash. Ph.D. thesis, University of New BrunswickGoogle Scholar
  35. 35.
    Rozière E, Loukili A, Cussigh F (2009) A performance based approach for durability of concrete exposed to carbonation. Constr Build Mater 23(1):190–199CrossRefGoogle Scholar
  36. 36.
    Xu H, Zhanqing C, Subei L, Wei H, Dan M (2010) Carbonation test study on low calcium fly ash concrete. Appl Mech Mater 34–35:327–331CrossRefGoogle Scholar
  37. 37.
    Younsi A, Turcry P, Roziere E, Aït-Mokhtar A, Loukili A (2011) Performance-based design and carbonation of concrete with high fly ash content. Cem Concr Compos 33(10):993–1000CrossRefGoogle Scholar
  38. 38.
    Das BB, Pandey SP (2011) Influence of fineness of fly ash on the carbonation and electrical conductivity of concrete. J Mater Civ Eng 23(9):1365–1368CrossRefGoogle Scholar
  39. 39.
    Zhang P, Li Q (2013) Effect of fly ash on durability of high performance concrete composites. Res J Appl Sci Eng Technol 6(1):7–12CrossRefGoogle Scholar
  40. 40.
    Van P, De Belie N (2014) Service life based global warming potential for high-volume fly ash concrete exposed to carbonation. Constr Build Mater 55:183–193CrossRefGoogle Scholar
  41. 41.
    Huiang C, Geng G, Lu Y, Bao G, Lin Z (2012) Carbonation depth research of concrete with low-volume fly ash. Appl Mech Mater 155–156:984–988CrossRefGoogle Scholar
  42. 42.
    Gao Y, Cheng L, Gao Z, Guo S (2013) Effects of different mineral admixtures on carbonation resistance of lightweight aggregate concrete. Constr Build Mater 43:506–510CrossRefGoogle Scholar
  43. 43.
    Venuat M, Alexandre J (1968) De la carbonatation du béton. Publication du CERILH, No. 638, pp 421–427Google Scholar
  44. 44.
    Parrott LJ (1987) A review of carbonation in reinforced concrete. Cement and Concrete AssociationGoogle Scholar
  45. 45.
    Duval R (1992) La durabilité des armatures et du béton d’enrobage, dans «La durabilité des bétons». Collection de l’ATHIL. Presse de l’École Nationale des Ponts et Chaussées, Paris, pp 173–224. ISBN 2-85978-184-6Google Scholar
  46. 46.
    Houst YF (1992) Diffusion de gaz, carbonatation et retrait de la pate de ciment durcie. Ph.D. Thesis, École Polytechnique Fédérale de LausanneGoogle Scholar
  47. 47.
    Shi HS, Xu BW, Zhou XC (2009) Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Constr Build Mater 23(5):1980–1985CrossRefGoogle Scholar
  48. 48.
    Wolf J, Dal Molin DCC (1989) Carbonation of mortars and concrete. Intervening factors. In: Symposium on pathology of buildings: prevention and recovery. Federal University of Rio Grande do Sul, Porto Alegre, pp 118–33Google Scholar
  49. 49.
    Roy SK, Poh KB, Northwood DO (1999) Durability of concrete–accelerated carbonation and weathering studies. Build Environ 34(5):597–606CrossRefGoogle Scholar
  50. 50.
    Cha Y-J, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput-Aid Civ Infrastruct Eng 32(5):361–378CrossRefGoogle Scholar
  51. 51.
    Kou G, Peng Y, Wang G (2014) Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf Sci 275:1–12CrossRefGoogle Scholar
  52. 52.
    Peng Y, Kou G, Shi Y, Chen Z (2008) Descriptive framework for the field of data mining and knowledge discovery. Int J Inf Technol Decis Mak 7(4):639–682CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  • Yasmina Kellouche
    • 1
  • Bakhta Boukhatem
    • 1
    • 2
    Email author
  • Mohamed Ghrici
    • 1
  • Arezki Tagnit-Hamou
    • 2
  1. 1.Geomaterials Laboratory, Department of Civil EngineeringUniversity of Hassiba Benbouali, ChlefChlefAlgeria
  2. 2.Department of Civil EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations