Neural Computing and Applications

, Volume 31, Supplement 2, pp 817–824 | Cite as

Analyzing cytogenetic chromosomal aberrations on fibrolamellar hepatocellular carcinoma detected by single-nucleotide polymorphs array

  • Esraa M. Hashem
  • Mai S. MabroukEmail author
  • Ayman M. Eldeib
Original Article


Fibrolamellar hepatocellular carcinoma is a unique malignant liver tumor type which arises in young adults and children. It is uncommon variation subtype of hepatocellular carcinoma which remains ineffectively recorded. Learning of cytogenetic changes in fibrolamellar hepatocellular carcinoma has lagged behind the information obtained from alternate entities of hepatocellular carcinoma lately. Gene expression profiling may prompt new biomarkers that may help develop diagnostic precision for distinguishing fibrolamellar hepatocellular carcinoma. The subatomic cytogenetic approach permits positional identification of gains, amplification, and deletion of DNA sequences of the whole tumor genome, to search for recurrent and particular cytogenetic changes in human fibrolamellar hepatocellular carcinoma. In this work, 13 cell lines of fibrolamellar carcinomas and 30 hepatocellular carcinoma samples examined by a single-nucleotide polymorphs array using two techniques to give more accuracy of the results. The majority of the abnormalities found in the fibrolamellar hepatocellular carcinoma positive cases seen as gain in 1q, 4q, 6q, 7p, 8q, 17q, 20q and loss in 1p, 4p-q, 8p, 11p, 13q, 17p, 18q, 19p, and 22q. The ultimate successive were central amplification at 1q (in 54% of 13 samples), 4q (in 54% of 13 samples), 7p (in 46% of 13 samples), and deletions at 19p13 (in 28% of 13 samples). The study revealed 3 distinct structural variations highlights-related genes MDM4, PRDM5, and WHSC1, and these genes are a novel target signature that can help to predict survival of patients with detecting fibrolamellar hepatocellular carcinoma.


Fibrolamellar hepatocellular carcinoma Hepatocellular carcinoma Single-nucleotide polymorphism array 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Craig JR, Peters RL, Edmondson HA, Omata M (1980) Fibrolamellar carcinoma of the liver: a tumor of adolescents and young adults with distinctive clinico-pathologic features. Cancer 15:372–379CrossRefGoogle Scholar
  2. 2.
    Hashim ES, Mabrouk MS (2014) Impact of parallel computing on identifying biomarkers of hepatocellular carcinoma. J Med Imaging Health Inf 4:1–5CrossRefGoogle Scholar
  3. 3.
    Moreno-Luna LE, Arrieta O, Leiva JG, Martínez B, Torre A, Uribe M, Rodríguez EL (2005) Clinical and pathologic factors associated with survival in young adult patients with fibrolamellar hepatocarcinoma. BMC Cancer 5:142CrossRefGoogle Scholar
  4. 4.
    Kakar S, Burgart LJ, Batts KP, Garcia J, Jain D, Ferrell LD (2005) Clinic pathologic features and survival in fibrolamellar carcinoma: comparison with conventional hepatocellular carcinoma with and without cirrhosis. Mod Pathol 18:1417–1423CrossRefGoogle Scholar
  5. 5.
    Zhang X, Ward SC (2012) Liver: fibrolamellar carcinoma. Atlas Genet Cytogenet Oncol Haematol 16(12):929–934Google Scholar
  6. 6.
    Darcy GD, Clarke RCh, Murphy JM, Honeyman JN, Bhanot U, LaQuaglia MP, Simon SM (2015) The genomic landscape of fibrolamellar hepatocellular carcinoma: whole genome sequencing of ten patients. Oncotarget 6(2):755–770CrossRefGoogle Scholar
  7. 7.
    Hashem EM, Mabrouk MS, Eldeib AM (2015) Clinical and genomic strategies for detecting hepatocellular carcinoma in early stages: a systematic review. Am J Biomed Eng 5:101–115Google Scholar
  8. 8.
    Mabrouk MS, Hashim EM, Sharawy A (2012) Statistical approaches for hepatocellular carcinoma (HCC) biomarker discovery. Am J Bioinform Res 2(6):102–109CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Wiszniewska J, Bi W, Shaw Ch, Stankiewicz P, Kang SH (2014) Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet 22:79–87CrossRefGoogle Scholar
  11. 11.
    Kruglyak L, Nickerson DA (2001) Variation is the spice of life. Nat Genet 27:234–236CrossRefGoogle Scholar
  12. 12.
    Cornella H, Alsinet C, Sayols S, Zhang Z, Hao K et al (2015) Unique genomic profile of fibrolamellar hepatocellular carcinoma. Gastroenterology 148:806–818CrossRefGoogle Scholar
  13. 13.
    Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17:1665–1674CrossRefGoogle Scholar
  14. 14.
    Wilkens L, Bredt M, Flemming P, Kubicka S, Klempnauer J, Kreipe H (2000) Cytogenetic aberrations in primary and recurrent fibrolamellar hepatocellular carcinoma detected by comparative genomic hybridization. Am J Clin Pathol 114:867–874CrossRefGoogle Scholar
  15. 15.
    Xu L, Hazard FK, Zmoos A-F, Jahchan N, Chaib H et al (2015) Genomic analysis of fibrolamellar hepatocellular carcinoma. Hum Mol Genet 24:50–63CrossRefGoogle Scholar
  16. 16.
    Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P (2007) QuantiSNP: an objective Bayes hidden-Markov model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res 35:2013–2025CrossRefGoogle Scholar
  17. 17.
    Wang Y, Wang S (2007) A novel stationary wavelet denoising algorithm for array-based dna copy number data. Bioinform Res Appl 3:206–222CrossRefGoogle Scholar
  18. 18.
    Mabrouk MS, Hashim ES, Shrawy A (2013) Discrete stationary wavelet transform of array CGH data for biomarkers identification of hepatocellular carcinoma. J Bioinformatics Intelligent Control 1(2):148–154CrossRefGoogle Scholar
  19. 19.
    Nguyen N, Oraintara S, Huang H, Wang Y (2007) Denoising of array-based DNA copy number data using the dual-tree complex wavelet transform. In: International conference on bioinformatics and bioengineering, pp 137–144Google Scholar
  20. 20.
    Joy J, Peter S, John N (2013) Denoising using soft thresholding. Int J Adv Res Electr Electron Instrum Eng 2:1027–1032Google Scholar
  21. 21.
    Hashim EM, Mabrouk MS (2014) A study of support vector machine algorithm for liver disease diagnosis. Am J Intell Syst 4:9–14Google Scholar
  22. 22.
    Stipa F, Yoon SS, Liau KH, Fong Y, Jarnagin WR, D’Angelica M (2006) Outcome of patients with fibrolamellar hepatocellular carcinoma. Cancer 106:1331–1338CrossRefGoogle Scholar
  23. 23.
    Hashim EM, Mabrouk MS, Sharawy A (2012) Circular binary segmentation modeling of array CGH data on hepatocellular carcinoma. In: Radio science conference (NRSC), 29th national, pp 667–674Google Scholar
  24. 24.
    Sun B, Wu J, Zhang T, Wang C (2008) High-resolution analysis of genomic profiles of hepatocellular carcinoma cells with differential osteopontin expression. Cancer Biol Ther 7:1–5CrossRefGoogle Scholar
  25. 25.
    Bressac B, Kew M, Wands J, Ozturk M (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350:429–431CrossRefGoogle Scholar
  26. 26.
    Wong N, Lai P, Lee S-W et al (1999) Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis. Am J Pathol 154:37–43CrossRefGoogle Scholar
  27. 27.
    Marchio A, Pineau P, Meddeb M et al (2000) Distinct chromosomal abnormality pattern in primary liver cancer of non-B, non-C patients. Oncogene 19:3733–3738CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  • Esraa M. Hashem
    • 1
  • Mai S. Mabrouk
    • 1
    Email author
  • Ayman M. Eldeib
    • 2
  1. 1.Biomedical Engineering DepartmentMisr University for Science and Technology (MUST University)6th of OctoberEgypt
  2. 2.Systems and Biomedical Engineering, Faculty of EngineeringCairo UniversityGizaEgypt

Personalised recommendations