Neural Computing and Applications

, Volume 29, Issue 10, pp 795–804 | Cite as

Fractional-order PID controller tuning using continuous state transition algorithm

  • Fengxue Zhang
  • Chunhua Yang
  • Xiaojun Zhou
  • Weihua Gui
Original Article

Abstract

Theoretical and applied studies of fractional-order PI\(^{\lambda }\)D\(^{\mu }\) (FOPID) controller in many scientific and engineering fields have shown many advantages compared to the classical PID control. However, the adjustment of FOPID controller becomes more complicated due to two additional parameters. In this study, the FOPID controller adjustment problem is transformed into a nonconvex optimization problem, and then a new metaheuristic method, named state transition algorithm (STA), is introduced to select the optimal FOPID controller parameters. In the meanwhile, the influence of objective criterion and sample size on the performance of FOPID controller design is analyzed. The dominance of the proposed method, especially for tuning FOPID controller parameters, is attested by several simulation cases and the comparisons of STA with other stochastic global optimization algorithms over the same problems.

Keywords

Fractional-order control PI\(^{\lambda }\)D\(^{\mu }\) State transition algorithm Objective criterion Sample size 

Notes

Acknowledgments

Authors thank the National Natural Science Foundation of China (Grant Nos. 61503416, 61533020, 61533021, 61590921) and Key Exploration Project (Grant No. 7131253) for the funding support.

Compliance with ethical standards

Conflict of interest

We declare that there is no conflict of interest.

References

  1. 1.
    Rai P, Shekher V, Prakash O (2012) Determination of stabilizing parameter of fractional order PID controller using genetic algorithm. Int J Comput Eng Manag 15:24Google Scholar
  2. 2.
    Sabatier J, Agrawal O, Machado J (2007) Advances in fractional calculus. Springer, NetherlandsCrossRefMATHGoogle Scholar
  3. 3.
    Dadras S, Momeni H (2012) Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Commun Nonlinear Sci Numer Simul 17(1):367–377MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Krishna B (2011) Studies on fractional order differentiators and integrators: a survey. Sig Process 91(3):386–426CrossRefMATHGoogle Scholar
  5. 5.
    Podlubny I (1999) Fractional-order systems and PID controllers. IEEE Trans Autom Control 44(1):208–214CrossRefMATHGoogle Scholar
  6. 6.
    Das S, Pan I, Das S, Gupta A (2012) A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng Appl Artif Intell 25(2):430–442CrossRefGoogle Scholar
  7. 7.
    Koksal E (2013) Fractional-order and active disturbance rejection control of nonlinear two-mass drive system. IEEE Trans Ind Electron 60(2):3806–3813Google Scholar
  8. 8.
    Wang D, Gao X (2012) H \(\infty\) design with fractional-order PD controllers. Automatica 48(5):974–977MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Petráš I (2012) Tuning and implementation methods for fractional-order controllers. Fract Calc Appl Anal 15(2):282–303MathSciNetMATHGoogle Scholar
  10. 10.
    Ramezanian H, Balochian S, Zare A (2013) Design of optimal fractional-order PID controllers using particle swarm optimization algorithm for automatic voltage regulator (avr) system. J Control Autom Electr Syst 24(5):601–611CrossRefGoogle Scholar
  11. 11.
    Gao Q, Chen J, Wang L, Xu S, Hou Y (2013) Multiobjective optimization design of a fractional order PID controller for a gun control system. Sci World J 2013(1):907256–907256Google Scholar
  12. 12.
    Biswas A, Das S, Abraham A, Dasgupta S (2009) Design of fractional-order PID controllers with an improved differential evolution. Eng Appl Artif Intell 22(2):343–350CrossRefGoogle Scholar
  13. 13.
    Özbay H, Bonnet C, Fioravanti A (2012) PID controller design for fractional-order systems with time delays. Syst Control Lett 61(1):18–23MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lee C, Chang F (2010) Fractional-order PID controller optimization via improved electromagnetism-like algorithm. Expert Syst Appl 37(12):8871–8878CrossRefGoogle Scholar
  15. 15.
    Padhee S, Gautam A, Singh Y, Kaur G (2011) A novel evolutionary tuning method for fractional order PID controller. Int J Soft Comput Eng 1(3):1–9Google Scholar
  16. 16.
    Zhou X, Yang C, Gui W (2012) State transition algorithm. J Ind Manag Optim 8(4):1039–1056MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Zhou X, Gao DY, Yang C (2013) A comparative study of state transition algorithm with harmony search and artificial bee colony. Adv Intell Syst Comput 213:651–659Google Scholar
  18. 18.
    Zhou X, Yang C, Gui W (2014) Nonlinear system identification and control using state transition algorithm. Appl Math Comput 226:169–179MathSciNetMATHGoogle Scholar
  19. 19.
    Zhou X, Gao DY, Yang C, Gui W (2016) Discrete state transition algorithm for unconstrained integer optimization problems. Neurocomputing 173:864–874CrossRefGoogle Scholar
  20. 20.
    Zhou X, Gao DY, Simpson AR (2016) Optimal design of water distribution networks by a discrete state transition algorithm. Eng Optim 48(4):603–628CrossRefGoogle Scholar
  21. 21.
    Wang Y, He H, Zhou X, Yang C, Xie Y (2016) Optimization of both operating costs and energy efficiency in the alumina evaporation process by a multi-objective state transition algorithm. Can J Chem Eng 94(1):53–65CrossRefGoogle Scholar
  22. 22.
    Wang G, Yang C, Zhu H, Li Y, Peng X, Gui W (2016) State-transition-algorithm-based resolution for overlapping linear sweep voltammetric peaks with high signal ratio. Chemometr Intell Lab Syst 151:61–70CrossRefGoogle Scholar
  23. 23.
    Monje C, Chen Y, Vinagre B, Xue D, Feliu-Batlle V (2010) Fractional-order systems and controls: fundamentals and applications. Springer, BerlinCrossRefMATHGoogle Scholar
  24. 24.
    Qin A, Huang V, Suganthan P (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417CrossRefGoogle Scholar
  25. 25.
    Liang J, Qin A, Suganthan P, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295CrossRefGoogle Scholar
  26. 26.
    Barbosa RS, Machado JT, Ferreira IM (2004) Tuning of PID controllers based on bodes ideal transfer function. Nonlinear Dyn 38:305–321CrossRefMATHGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2016

Authors and Affiliations

  • Fengxue Zhang
    • 1
  • Chunhua Yang
    • 1
  • Xiaojun Zhou
    • 1
  • Weihua Gui
    • 1
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations