Adaptively stepped SPH for fluid animation based on asynchronous time integration

  • 834 Accesses

  • 4 Citations


We present a novel adaptive stepping scheme for SPH fluids, in which particles have their own time steps determined from local conditions, e.g. courant condition. These individual time steps are constrained for global convergence and stability. Fluid particles are then updated asynchronously. The approach naturally allocates computing resources to visually complex regions, e.g. regions with intense collisions, thereby reducing the overall computational time. The experiments show that our approach is more efficient than the standard method and the method with globally adaptive time steps, especially in highly dynamic scenes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Ihmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M (2014) Sph fluids in computer graphics. In: State-of-the-art report eurographics, pp 21–42

  2. 2.

    Markus I, Nadir A, Markus B, Matthias T (2011) A parallel SPH implementation on multi-core CPUs. Comput Graph Forum 30(1):99–112

  3. 3.

    Desbrun M, Cani M-P (1999) Space-time adaptive simulation of highly deformable substances. Technical Report 3829, INRIA

  4. 4.

    Adams B, Pauly M, Keiser R, Guibas LJ (2007) Adaptively sampled particle fluids. ACM Trans Graph Proc SIGGRAPH 26(3):48

  5. 5.

    Solenthaler B, Gross M (2011) Two-scale particle simulation. ACM Trans Graph Proc SIGGRAPH 30(4):81:1–81:8

  6. 6.

    Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574

  7. 7.

    Desbrun M, Cani M-P (1996) Smoothed particles: a new paradigm for animating highly deformable bodies. In: Eurographics workshop on computer animation and simulation (EGCAS), pp 61–67. Springer, Berlin

  8. 8.

    Ihmsen M, Akinci N, Gissler M, Teschner M (2010) Boundary handling and adaptive time-stepping for PCISPH. In: Workshop on virtual reality interaction and physical simulation, pp 79–88. The Eurographics Association

  9. 9.

    Goswami P, Batty C (2014) Regional time stepping for SPH. In: Eurographics, pp 45–48. The Eurographics Association

  10. 10.

    Goswami P, Pajarola R (2011) Time adaptive approximate SPH. In: Proceedings of the 8th workshop on virtual reality interaction and physical simulation, pp 19–28. VRIPHYS

  11. 11.

    Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

  12. 12.

    Becker M, Teschner M (2007) Weakly compressible SPH for free surface flows. In: ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 209–217

  13. 13.

    Muller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 154–159

  14. 14.

    He X, Liu N, Li S, Wang H, Wang G (2012) Local poisson SPH for viscous incompressible fluids. Comput Graph Forum 31(6):1948–1958

  15. 15.

    Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M (2014) Implicit incompressible SPH. IEEE Trans Vis Comput Graph 20(3):426–435

  16. 16.

    Akinci N, Ihmsen M, Akinci G et al (2012) Versatile rigid–fluid coupling for incompressible SPH. ACM Trans Graph TOG 31(4):62

  17. 17.

    Becker M, Tessendorf H, Teschner M (2009) Direct forcing for Lagrangian rigid–fluid coupling. IEEE Trans Vis Comput Graph 15(3):493–503

  18. 18.

    Yu J, Turk G (2013) Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans Graph Proc SIGGRAPH 32(1):5:1–5:12

  19. 19.

    Bhatacharya H, Gao Y, Bargteil A (2011) A level-set method for skinning animated particle data. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 17–24. ACM

  20. 20.

    Akinci G, Ihmsen M, Akinci N, Teschner M (2012) Parallel surface reconstruction for particle-based fluids. In: Computer graphics forum, vol 31, pp 1797–1809. Wiley Online Library

  21. 21.

    Zhou ZH, Zhao JW, Cao FL (2013) Surface reconstruction based on extreme learning machine. Neural Comput Appl 23(2):283–292

  22. 22.

    Akinci N, Akinci G, Teschner M (2013) Versatile surface tension and adhesion for SPH fluids. ACM Trans Graph Proc SIGGRAPH 32(6):182

  23. 23.

    Yu J, Wojtan C, Turk G, Yap C (2012) Explicit mesh surfaces for particle based fluids. In: Computer graphics forum, vol 31, pp 815–824. Wiley Online Library

  24. 24.

    Goswami P, Schlegel P, Solenthaler B, Pajarola R (2010) Interactive sph simulation and rendering on the GPU. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 55–64. Eurographics Association

  25. 25.

    Valdez-Balderas D, Domnguez JM, Rogers BD, Crespo AJC (2013) Towards accelerating smoothed particle hydrodynamics simulations for free surface flows on multi-GPU clusters. J Parallel Distrib Comput 73(11):1483–1493

  26. 26.

    Domnguez JM, Crespo AJC, Gesteira MG (2013) Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput Phys Commun 184(3):617–627

  27. 27.

    Domnguez JM, Crespo AJC, Valdez-Balderas D, Rogers BD, Gomez-Gesteira M (2013) New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput Phys Commun 184(8):1848–1860

  28. 28.

    Chen JX, Fu X, Wegman J (1999) Real-time simulation of dust behavior generated by a fast traveling vehicle. ACM Trans Model Comput Simul 9(2):81–104

  29. 29.

    Chen JX, Lobo NV (1995) Toward interactive-rate simulation of fluids with moving obstacles using Navier–Stokes equations. Graph Models Image Process 57(2):107–116

  30. 30.

    Nie X, Chen L, Xiang T (2014) An efficient sleepy algorithm for particle-based fluids. Int J Comput Games Technol 2014:1–8

  31. 31.

    Keiser R (2006) Multiresolution particle-based fluids. ETH Dep Comput Sci 31(6):17971809

  32. 32.

    Horvath CJ, Solenthaler B (2013) Mass preserving multi-scale SPH. Pixar Technical Memo 13-04, Pixar Animation Studios

  33. 33.

    Orthmann J, Kolb A (2012) Temporal blending for adaptive SPH. Comput Graph Forum 31(8):2436–2449

  34. 34.

    Solenthaler B, Pajarola R (2009) Predictive–corrective incompressible SPH. ACM Trans Graph 28(3):40

  35. 35.

    Rosipal R, Girolami M, Trejo LJ et al (2001) Kernel PCA for feature extraction and de-noising in nonlinear regression. Neural Comput Appl 10(3):231–243

Download references


This work was supported by National Natural Science Foundation of China (Nos. 61272357, 61300074, 61572075) and Fundamental Research Funds for the Central Universities (FRF-BR-15-058A).

Author information

Correspondence to Xiaokun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 20205 KB)

Supplementary material 1 (avi 20205 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ban, X., Wang, X., He, L. et al. Adaptively stepped SPH for fluid animation based on asynchronous time integration. Neural Comput & Applic 29, 33–42 (2018) doi:10.1007/s00521-016-2286-8

Download citation


  • Fluid simulation
  • Adaptive SPH
  • Individual time steps
  • Asynchronous