Effects of a home-exercise programme in childhood survivors of acute lymphoblastic leukaemia on physical fitness and physical functioning: results of a randomised clinical trial

  • Jahn Dubery Manchola-González
  • Caritat Bagur-Calafat
  • Montserrat Girabent-Farrés
  • Josep Ricard Serra-Grima
  • Roser Álvarez Pérez
  • Manuel Vicente Garnacho-Castaño
  • Isabel Badell
  • Robinson Ramírez-VélezEmail author
Original Article



The aim of this study was to evaluate the effects of a home-exercise programme on physical fitness indicators and physical functioning after completion of chemotherapy in children and adolescents diagnosed with acute lymphoblastic leukaemia (ALL).


Twenty-four survivors of ALL were assigned to usual care (control group, n = 12, 11.0 ± 3.7 years) or to a home-exercise programme (intervention group, n = 12, 11.8 ± 4.3 years). Peak oxygen uptake (VO2peak ml/kg/min), minute ventilation (VE L/min), output of carbon dioxide (VCO2 L/min), respiratory exchange ratio (RER), peak heart rate (beats/min), maximal load (W), VO2 at anaerobic threshold (VO2 at AT, ml/kg/min), pulse oxygen (PO2 ml/beat), heart rate at anaerobic threshold (beats/min), handgrip test (pounds), flexibility (cm), Timed Up & Go test TUG (s), and Timed Up and Down Stairs test (TUDS s) were measured at baseline and over 16 weeks of intervention.


Adjusted mixed linear models revealed a significant group-time interaction + 6.7 (95% CI = 0.6–12.8 ml/kg/min; η2 partial = 0.046, P = 0.035) for VO2peak. Similarly, changes in mean values were observed after the home-exercise programme compared with baseline for VE (L/min) − 8.8 (3.0) (P = 0.035), VCO2 − 0.2 (0.08), (P = 0.041), maximal load (W) − 35.5 (12.8) (P = 0.024), TUDS (s) 0.8 (2.6) (P = 0.010), and TUG (s) 0.6 (0.1) (P = 0.001); however, the group-time interaction was not significant.


The home-exercise programme resulted in changes in measures of VO2peak, VE, VCO2, and functional capacity during daily life activities (TUDS and TUG test). This is an interesting and important study that surely adds to the current body of knowledge/literature on the safety of exercise interventions, especially in children with haematological cancer.


Acute lymphoblastic leukaemia/therapy Children Exercise therapy Flexibility Physical fitness Strength 



Patients and their families, the Hemato-Oncology Unit, Pediatrics and the Cardiology Service of the Santa Creu and Sant Pau Hospital in Barcelona.

Compliance with ethical standards

The study was approved by the university’s institutional review board. Written informed consent was obtained from all participants.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Abbasi S, Maleha F, Shobaki M (2013) Acute lymphoblastic leukemia experience: epidemiology and outcome of two different regimens. Mediterr J Hematol Infect Dis 5(1):e2013024CrossRefGoogle Scholar
  2. 2.
    Ward E, DeSantis C, Robbins A, Kohler B, Jemal A (2014) Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64(2):83CrossRefGoogle Scholar
  3. 3.
    Silverman LB (2014) Balancing cure and long-term risks in acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program 2014(1):190–197CrossRefGoogle Scholar
  4. 4.
    Söntgerath R, Eckert K (2015) Impairments of lower extremity muscle strength and balance in childhood cancer patients and survivors: a systematic review. Pediatr Hematol Oncol 32:585–612CrossRefGoogle Scholar
  5. 5.
    van Brussel M, Takken T, Lucia A, van der Net J, Helders PJ (2005) Is physical fitness decreased in survivors of childhood leukemia? A systematic review. Leukemia 19:13–17CrossRefGoogle Scholar
  6. 6.
    Simioni C, Zauli G, Martelli AM et al (2018) Physical training interventions for children and teenagers affected by acute lymphoblastic leukemia and related treatment impairments. Oncotarget. 9(24):17199–17209PubMedPubMedCentralGoogle Scholar
  7. 7.
    Klika R, Tamburini A, Galanti G, Mascherini G, Stefani L (2018) The role of exercise in pediatric and adolescent cancers: a review of assessments and suggestions for clinical implementation. J Funct Morphol Kinesiol 3(1):7CrossRefGoogle Scholar
  8. 8.
    Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E, Kaspers GJL (2016) Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev 3:CD008796PubMedGoogle Scholar
  9. 9.
    Morales JS, Valenzuela PL, Rincón-Castanedo C, Takken T, Fiuza-Luces C, Santos-Lozano A, Lucia A (2018) Exercise training in childhood cancer: a systematic review and meta-analysis of randomized controlled trials. Cancer Treat Rev 70:154–167CrossRefGoogle Scholar
  10. 10.
    Esbenshade AJ, Friedman DL, Smith WA, Jeha S, Pui CH, Robison LL, Ness KK (2014) Feasibility and initial effectiveness of home exercise during maintenance therapy for childhood acute lymphoblastic leukemia. Pediatr Phys Ther 26(3):301–307CrossRefGoogle Scholar
  11. 11.
    Chan AW, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleza-Jeric K, Laupacis A, Moher D (2013) SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ 346:e7586CrossRefGoogle Scholar
  12. 12.
    Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting the anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027CrossRefGoogle Scholar
  13. 13.
    Mathiowetz V (2002) Comparison of Rolyan and Jamar dynamometers for measuring grip strength. Occup Ther Int 9(3):201–209CrossRefGoogle Scholar
  14. 14.
    Verbecque E (2015) Lobo Da Costa PH, Vereeck L, Hallemans A. Psychometric properties of functional balance tests in children: a literature review. Dev Med Child Neurol 57(6):521–529CrossRefGoogle Scholar
  15. 15.
    Martinez-Gomez D, Martinez-de-Haro V, Pozo T, Welk GJ, Villagra A, Calle ME, Marcos A, Veiga OL (2009) Reliability and validity of the PAQ-A questionnaire to assess physical activity in Spanish adolescents. Rev Esp Salud Publica 83:427–439CrossRefGoogle Scholar
  16. 16.
    Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 4:863CrossRefGoogle Scholar
  17. 17.
    Ness KK, Baker KS, Dengel DR, Youngren N, Sibley S, Mertens AC, Gurney JG (2007) Body composition, muscle strength deficits and mobility limitations in adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 49(7):975–981CrossRefGoogle Scholar
  18. 18.
    Warner JT, Bell W, Webb DK, Gregory JW (1997) Relationship between cardiopulmonary response to exercise and adiposity in survivors of childhood malignancy. Arch Dis Child 76:298–303CrossRefGoogle Scholar
  19. 19.
    Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H (2009) Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 301(19):2024–2035CrossRefGoogle Scholar
  20. 20.
    Fiuza-Luces C, Padilla JR, Soares-Miranda L, Santana-Sosa E, Quiroga JV, Santos-Lozano A, Pareja-Galeano H, Sanchis-Gomar F, Lorenzo-González R, Verde Z, López-Mojares LM, Lassaletta A, Fleck SJ, Pérez M, Pérez-Martínez A, Lucia A (2017) Exercise intervention in pediatric patients with solid tumors: the Physical Activity in Pediatric Cancer Trial. Med Sci Sports Exerc 49(2):223–230CrossRefGoogle Scholar
  21. 21.
    Ness KK, Kaste SC, Zhu L, Pui CH, Jeha S, Nathan PC, Inaba H, Wasilewski-Masker K, Shah D, Wells RJ, Karlage RE, Robison LL, Cox CL (2015) Skeletal, neuromuscular and fitness impairments among children with newly diagnosed acute lymphoblastic leukemia. Leuk Lymphoma 56(4):1004–1011CrossRefGoogle Scholar
  22. 22.
    Takken T, van der Torre P, Zwerink M, Hulzebos EH, Bierings M, Helders PJ, van der Net J (2009) Development, feasibility and efficacy of a community-based exercise training program in pediatric cancer survivors. Psychooncology 18:440–448CrossRefGoogle Scholar
  23. 23.
    San Juan A, Fleck S, Chamorro-Vina C, Maté-Muñoz JL, Moral S, García-Castro J, Ramírez M, Madero L, Lucia A (2007) Early-phase adaptations to intrahospital training in strength and functional mobility of children with leukemia. J Strength Cond Res 21:173–177CrossRefGoogle Scholar
  24. 24.
    San Juan AF, Fleck SJ, Chamorro-Viña C, Maté-Muñoz JL, Moral S, Pérez M, Cardona C, Del Valle MF, Hernández M, Ramírez M, Madero L, Lucia A (2007) Effects of an intrahospital exercise program intervention for children with leukemia. Med Sci Sports Exerc 39(1):13–21CrossRefGoogle Scholar
  25. 25.
    Hauser M, Gibson BS, Wilson N (2001) Diagnosis of anthracyclineinduced late cardiomyopathy by exercise-spiroergometry and stress-echocardiography. Eur J Pediatr 160(10):607–610CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jahn Dubery Manchola-González
    • 1
  • Caritat Bagur-Calafat
    • 1
  • Montserrat Girabent-Farrés
    • 1
  • Josep Ricard Serra-Grima
    • 2
  • Roser Álvarez Pérez
    • 2
  • Manuel Vicente Garnacho-Castaño
    • 3
  • Isabel Badell
    • 2
  • Robinson Ramírez-Vélez
    • 4
    Email author
  1. 1.Physiotherapy DepartmentUniversitat Inernacional de CatalunyaBarcelonaSpain
  2. 2.Hospital de la Santa Creu i Sant PauBarcelonaSpain
  3. 3.Research group in physical activity, performance and health (GRI-AFIRS)School of Health Sciences, TecnoCampus-Pompeu Fabra UniversityBarcelonaSpain
  4. 4.Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN)Instituto de Investigación Sanitaria de Navarra (IdiSNA)PamplonaSpain

Personalised recommendations