Late complications associated with totally implantable venous access port implantation via the internal jugular vein

  • Shigeaki Tsuruta
  • Yasutomo Goto
  • Hideo Miyake
  • Hidemasa Nagai
  • Yuichiro Yoshioka
  • Norihiro YuasaEmail author
  • Junichi Takamizawa
Original Article



Several studies have analyzed late complications associated with totally implantable venous access ports (TIVAP) implantation via the internal jugular vein (IJV); however, the reported results are inconclusive. The aim of the study is to elucidate the characteristics and risk factors of late complications associated with TIVAP implantation via the IJV.


The study included 482 patients who underwent TIVAP implantation for long-term chemotherapy and/or nutritional support between April 2012 and December 2017. Most patients (95.2%) had malignant diseases. Events requiring TIVAP removal were defined as TIVAP-related complications.


The median TIVAP and global follow-ups were 319 days (IQR 152–661) and 218,971 catheter days, respectively. The 3-year cumulative TIVAP availability rate was 70%. There were 44 complications (incidence of 9.1%; 0.201 complications/1000 catheter days). Infectious, catheter-related, and port-related complications occurred in 21, 14, and 9 patients, respectively with infectious complications occurring earlier and more frequently than catheter- and port-related complications. Multivariate analysis revealed that age < 65 years and presence of non-gastrointestinal diseases were significant unfavorable factors for TIVAP-related complications. Patients with 1 and 2 of these factors had an elevated risk (2.2 and 5.4 times, respectively) compared with those without.


Among the late complications associated with TIVAP implantation via the IJV, infectious complications occur earlier and more frequently than catheter- and port-related complications. Patients with an age < 65 years and having non-gastrointestinal diseases have a significantly high risk of TIVAP-related complications.


Totally implantable venous access port Internal jugular vein Complication Infection 


Funding information

This work is supported by Japanese Red Cross Nagoya First Hospital Research Grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

520_2019_5122_MOESM1_ESM.ppt (555 kb)
ESM 1 (PPT 555 kb)
520_2019_5122_MOESM2_ESM.docx (15 kb)
ESM 2 (DOCX 14 kb)


  1. 1.
    Koch HJ, Pietsch M, Krause U et al (1998) Implantable vascular access systems: experience in 1500 patients with totally implanted central venous port systems. World J Surg 22(1):12–16CrossRefGoogle Scholar
  2. 2.
    Vescia S, Baumgärtner AK, Jacobs VR et al (2008) Management of venous port systems in oncology: a review of current evidence. Ann Oncol 19:9–15PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Expert Panel on Interventional Radiology, Shaw CM, Shah S, Kapoor BS et al (2017) ACR Appropriateness Criteria® Radiologic Management of Central Venous Access. J Am Coll Radiol 14(11S):S506–S529Google Scholar
  4. 4.
    Kurul S, Saip P, Aydin T (2002) Totally implantable venous-access ports: local problems and extravasation injury. Lancet Oncol 3:684–692PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lefebvre L, Noyon E, Georgescu D et al (2016) Port catheter versus peripherally inserted central catheter for postoperative chemotherapy in early breast cancer: a retrospective analysis of 448 patients. Support Care Cancer 24(3):1397–1403PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Matsushima H, Adachi T, Iwata T, Hamada T, Moriuchi H, Yamashita M, Kitajima T, Okubo H, Eguchi S (2017) Analysis of the outcomes in central venous access port implantation performed by residents via the internal jugular vein and subclavian vein. J Surg Educ 74(3):443–449PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Teichgräber UK, Kausche S, Nagel SN, Gebauer B (2011) Outcome analysis in 3,160 implantations of radiologically guided placements of totally implantable central venous port systems. Eur Radiol 21(6):1224–1232PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kim JT, Oh TY, Chang WH, Jeong YK (2012) Clinical review and analysis of complications of totally implantable venous access devices for chemotherapy. Med Oncol 29(2):1361–1364PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yip D, Funaki B (2002) Subcutaneous chest ports via the internal jugular vein. A retrospective study of 117 oncology patients. Acta Radiol 43(4):371–375PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Charvát J, Linke Z, Horáèková M, Prausová J (2006) Implantation of central venous ports with catheter insertion via the right internal jugular vein in oncology patients: single center experience. Support Care Cancer 14(11):1162–1165PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Zhou J, Qian S, He W et al (2014) Implanting totally implantable venous access port via the internal jugular vein guided by ultrasonography is feasible and safe in patients with breast cancer. World J Surg Oncol 12:378PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Nagasawa Y, Shimizu T, Sonoda H, Mekata E, Wakabayashi M, Ohta H, Murata S, Mori T, Naka S, Tani T (2014) A comparison of outcomes and complications of totally implantable access port through the internal jugular in versus the subclavian vein. Int Surg 99(2):182–188PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gebauer B, El-Sheik M, Vogt M et al (2009) Combined ultrasound and fluoroscopy guided port catheter implantation—high success and low complication rate. Eur J Radiol 69(3):517–522PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Torramade JR, Cienfuegos JA, Hernández JL et al (1993) The complications of central venous access systems: a study of 218 patients. Eur J Surg 159(6-7):323–327PubMedPubMedCentralGoogle Scholar
  15. 15.
    Biffi R, de Braud F, Orsi F et al (1998) Totally implantable central venous access ports for long-term chemotherapy. A prospective study analyzing complications and costs of 333 devices with a minimum follow-up of 180 days. Ann Oncol 9(7):767–773PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Takehara K, Tanakaya K, Morihiro T et al (2011) Analysis of infecting organism and risk factors for infections related to totally implantable central venous access devices. J Jpn Soc Surg Infect 8(6):699–703 (in Japanese with English abstract)Google Scholar
  17. 17.
    Fagnani D, Bertolini A, Catena L, Tomirotti M, Visini M, Alatri A, de Paoli A, Aondio GM, Milani M, Arpaia G, Cimminiello C, POLONORD Group, Franchi R, Porta C, Pugliese P, Borgonovo K, Duro M, Ardizzoia A, Filipazzi V, Isa L, Vergani C, Carpenedo M, Viale P (2009) The impact of antithrombotic prophylaxis on infectious complications in cancer patients with central venous catheters: an observational study. Blood Coagul Fibrinolysis 20(1):35–40PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chang L, Tsai JS, Huang SJ, Shih CC (2003) Evaluation of infectious complications of the implantable venous access system in a general oncologic population. Am J Infect Control 31(1):34–39PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Yamaguchi K, Ogata Y, Gotanda U et al (2011) The durability of subcutaneously implantable central venous catheter ports in cancer patients––the relation between parenteral nutrition and catheter related blood stream infection. J Surg Metab Nutr 45(6):185–190 (in Japanese with English abstract)Google Scholar
  20. 20.
    Bassi KK, Giri AK, Pattanayak M, Abraham SW, Pandey KK (2012) Totally implantable venous access ports: retrospective review of long-term complications in 81 patients. Indian J Cancer 49:114–118PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Biffi R, Pozzi S, Agazzi A, Pace U, Floridi A, Cenciarelli S, Peveri V, Cocquio A, Andreoni B, Martinelli G (2004) Use of totally implantable central venous access ports for high-dose chemotherapy and peripheral blood stem cell transplantation: results of a monocentre series of 376 patients. Ann Oncol 15(2):296–300PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lebeaux D, Larroque B, Gellen-Dautremer J, Leflon-Guibout V, Dreyer C, Bialek S, Froissart A, Hentic O, Tessier C, Ruimy R, Pelletier AL, Crestani B, Fournier M, Papo T, Barry B, Zarrouk V, Fantin B (2012) Clinical outcome after a totally implantable venous access port-related infection in cancer patients: a prospective study and review of the literature. Medicine (Baltimore) 91(6):309–318CrossRefGoogle Scholar
  23. 23.
    Walser EM (2012) Venous access ports: indications, implantation technique, follow-up, and complications. Cardiovasc Intervent Radiol 35(4):751–764PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Adler A, Yaniv I, Steinberg R et al (2006) Infectious complications of implantable ports and Hickman catheters in paediatric haematology-oncology patients. J Hosp Infect 62(3):358–365PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Vidal M, Genillon JP, Forestier E et al (2016) Outcome of totally implantable venous-access port-related infections. Med Mal Infect 46(1):32–38PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Manzanares W, Hardy G (2008) The role of prebiotics and synbiotics in critically ill patients. Curr Opin Clin Nutr Metab Care 11(6):782–789PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Mori Y, Nagayama S, Kawamura J, Hasegawa S, Tanaka E, Okabe H, Takeuchi M, Sonobe M, Matsumoto S, Kanai M, Muto M, Chiba T, Sakai Y (2016) A retrospective analysis on the utility and complications of upper arm ports in 433 cases at a single institute. Int J Clin Oncol 21(3):474–482PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ikushima S, Ono R, Fukuda K, Sakayori M, Awano N, Kondo K (2016) Trousseau’s syndrome: cancer-associated thrombosis. Jpn J Clin Oncol 46(3):204–208PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wang YC, Lin PL, Chou WH et al (2017) Long-term outcomes of totally implantable venous access devices. Support Care Cancer 25(7):2049–2054PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ignatov A, Hoffman O, Smith B, Fahlke J, Peters B, Bischoff J, Costa SD (2009) An 11-year retrospective study of totally implanted central venous access ports: complications and patient satisfaction. Eur J Surg Oncol 35(3):241–246PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Wyschkon S, Löschmann JP, Scheurig-Münkler C, Nagel S, Hamm B, Elgeti T (2016) Apparent migration of implantable port devices: normal variations in consideration of BMI. J Vasc Access 17(2):155–161PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ji L, Yang J, Miao J et al (2015) Infections related to totally implantable venous-access ports: long-term experience in one center. Cell Biochem Biophys 72(1):235–240PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Samaras P, Dold S, Braun J, Kestenholz P, Breitenstein S, Imhof A, Renner C, Stenner-Liewen F, Pestalozzi BC (2008) Infectious port complications are more frequent in younger patients with hematologic malignancies than in solid tumor patients. Oncology. 74(3-4):237–244PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kim HJ, Yun J, Kim HJ et al (2010) Safety and effectiveness of central venous catheterization in patients with cancer: prospective observational study. J Korean Med Sci 25(12):1748–1753PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wang TY, Lee KD, Chen PT, Chen MC, Chen YY, Huang CE, Kuan FC, Chen CC, Lu CH (2015) Incidence and risk factors for central venous access port-related infection in Chinese cancer patients. J Formos Med Assoc 114(11):1055–1060PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Pandey N, Chittams JL, Trerotola SO (2013) Outpatient placement of subcutaneous venous access ports reduces the rate of infection and dehiscence compared with inpatient placement. J Vasc Interv Radiol 24(6):849–854PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Okada S, Shiraishi A, Yamashiro Y, Inoue T, Tsuge D, Aida M, Kuwatsuru R (2015) A retrospective statistical analysis of the late complications associated with central venous port placements. Jpn J Radiol 33(1):21–25PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Caers J, Fontaine C, Vinh-Hung V, de Mey J, Ponnet G, Oost C, Lamote J, de Greve J, van Camp B, Lacor P (2005) Catheter tip position as a risk factor for thrombosis associated with the use of subcutaneous infusion ports. Support Care Cancer 13(5):325–331PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wu CY, Hu HC, Ko PJ, Fu JY, Wu CF, Liu YH, Li HJ, Kao TC, Kao KC, Yu SY, Chang CJ, Hsieh HC (2012) Risk factors and possible mechanisms of superior vena cava intravenous port malfunction. Ann Surg 255(5):971–975PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Xiao SP, Xiong B, Chu J et al (2015) Fracture and migration of implantable venous access port catheters: cause analysis and management of 4 cases. J Huazhong Univ Sci Technolog Med Sci 35(5):763–765PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Zawacki WJ, Walker TG, DeVasher E et al (2009) Wound dehiscence or failure to heal following venous access port placement in patients receiving bevacizumab therapy. Vasc Interv Radiol 20(5):624–627CrossRefGoogle Scholar
  42. 42.
    National Cancer Center Research Institute. Recent Cancer Statistics.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of SurgeryJapanese Red cross Nagoya First HospitalNagoyaJapan
  2. 2.Department of Laboratory MedicineJapanese Red Cross Nagoya First HospitalNagoyaJapan

Personalised recommendations