Is current initial empirical antibiotherapy appropriate to treat bloodstream infections in short-duration chemo-induced febrile neutropenia?

  • A. Joncour
  • M. Puyade
  • A. Michaud
  • J-M. Tourani
  • F. Cazenave-Roblot
  • Blandine RammaertEmail author
Original Article



Fever of unknown origin is by far the most common diagnosis in low-risk febrile neutropenic patients undergoing chemotherapy. The current empirical regimen combines amoxicillin-clavulanic acid and fluoroquinolones in low-risk neutropenic patients. The aim of this study was to assess the appropriateness of antibiotherapy and the outcome of bloodstream infections (BSI) in patients with expected neutropenia of short duration.


This 2-year monocentric retrospective study included all consecutive neutropenic febrile adult patients with expected duration of neutropenia ≤ 7 days. They were classified into low- and high-risk groups for complications using the MASCC index. Appropriateness of initial empirical antibiotic regimen was assessed for each BSI. Multivariate analysis was performed to identify factors associated with mortality.


Over the study period, 189 febrile episodes with positive blood cultures in neutropenic patients were reported, of which 44 occurred during expected duration of neutropenia ≤ 7 days. Patients were classified as high-risk (n = 27) and low-risk (n = 17). Gram-negative bacteria BSI represented 57% of cases, including only two multidrug-resistant bacteria in high-risk patients. Initial empirical antibiotherapy was appropriate in 86% of cases, and inappropriate in the event of coagulase-negative Staphylococcus BSI (14%), although the outcome was always favorable. In low-risk patients, no deaths and only 12% of severe complications were reported, contrasting with mortality and complication rates of 48% (p < 0.001) and 63% in high-risk patients (p < 0.001), respectively.


Outcome of BSI is favorable in low-risk febrile neutropenic patients, even with inappropriate empirical initial antibiotic regimen for coagulase-negative Staphylococcus BSI. Initial in-hospital assessment and close monitoring of these patients are however mandatory.


Febrile neutropenia Bloodstream infections Empirical antibiotic regimen 



We thank Jeffrey Ashram for editing the manuscript.

Compliance with ethical standards

The National Data Protection Authority (Commission Nationale Informatique et Libertés), which is responsible for protection of individual data in France, approved the panel and its procedures.

Conflict of interest

AJ received travel grants for conferences from Pierre Fabre, Sanofi, Pfizer, and Ipsen.

BR received travel grants for conferences from Pfizer, Gilead, and Astellas, and speaker’s fees from Merck/MSD, Gilead, and Basilea.

AM received travel grants for conferences from MSD, EUMEDICA, and bioMérieux.

The other authors declared no conflict of interest.

Supplementary material

520_2019_5113_MOESM1_ESM.docx (37 kb)
ESM 1 (DOCX 36 kb)


  1. 1.
    de Naurois J, Novitzky-Basso I, Gill MJ et al (2010) Management of febrile neutropenia: ESMO Clinical Practice Guidelines. Ann Oncol Off J Eur Soc Med Oncol 21(Suppl 5):v252–v256CrossRefGoogle Scholar
  2. 2.
    Freifeld AG, Bow EJ, Sepkowitz KA et al (2011) Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Clin Infect Dis Off Publ Infect Dis Soc Am 52:e56–e93CrossRefGoogle Scholar
  3. 3.
    Talcott JA, Finberg R, Mayer RJ, Goldman L (1988) The medical course of cancer patients with fever and neutropenia. Clinical identification of a low-risk subgroup at presentation. Arch Intern Med 148:2561–2568CrossRefGoogle Scholar
  4. 4.
    Klastersky J, Paesmans M, Rubenstein EB, Boyer M, Elting L, Feld R, Gallagher J, Herrstedt J, Rapoport B, Rolston K, Talcott J (2000) The Multinational Association for Supportive Care in Cancer Risk Index: a multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J Clin Oncol 18:3038–3051CrossRefGoogle Scholar
  5. 5.
    Flowers CR, Seidenfeld J, Bow EJ, Karten C, Gleason C, Hawley DK, Kuderer NM, Langston AA, Marr KA, Rolston KV, Ramsey SD (2013) Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol Off J Am Soc Clin Oncol 31:794–810CrossRefGoogle Scholar
  6. 6.
    Baden LR, Swaminathan S, Angarone M et al (2016) Prevention and treatment of cancer-related infections, version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw JNCCN 14:882–913CrossRefGoogle Scholar
  7. 7.
    Kamana M, Escalante C, Mullen CA, Frisbee-Hume S, Rolston KVI (2005) Bacterial infections in low-risk, febrile neutropenic patients. Cancer 104:422–426CrossRefGoogle Scholar
  8. 8.
    Cullen M, Steven N, Billingham L, Gaunt C, Hastings M, Simmonds P, Stuart N, Rea D, Bower M, Fernando I, Huddart R, Gollins S, Stanley A, Simple Investigation in Neutropenic Individuals of the Frequency of Infection after Chemotherapy +/- Antibiotic in a Number of Tumours (SIGNIFICANT) Trial Group (2005) Antibacterial prophylaxis after chemotherapy for solid tumors and lymphomas. N Engl J Med 353:988–998CrossRefGoogle Scholar
  9. 9.
    Bucaneve G, Micozzi A, Menichetti F, Martino P, Dionisi MS, Martinelli G, Allione B, D'Antonio D, Buelli M, Nosari AM, Cilloni D, Zuffa E, Cantaffa R, Specchia G, Amadori S, Fabbiano F, Deliliers GL, Lauria F, Foà R, del Favero A, Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) Infection Program (2005) Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N Engl J Med 353:977–987CrossRefGoogle Scholar
  10. 10.
    Kern WV, Cometta A, De Bock R, Langenaeken J, Paesmans M, Gaya H (1999) Oral versus intravenous empirical antimicrobial therapy for fever in patients with granulocytopenia who are receiving cancer chemotherapy. International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer. N Engl J Med 341:312–318CrossRefGoogle Scholar
  11. 11.
    Innes HE, Smith DB, O’Reilly SM, Clark PI, Kelly V, Marshall E (2003) Oral antibiotics with early hospital discharge compared with in-patient intravenous antibiotics for low-risk febrile neutropenia in patients with cancer: a prospective randomised controlled single centre study. Br J Cancer 89:43–49CrossRefGoogle Scholar
  12. 12.
    Viscoli C, Cometta A, Kern WV et al (2006) Piperacillin-tazobactam monotherapy in high-risk febrile and neutropenic cancer patients. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 12:212–216Google Scholar
  13. 13.
    Garnica M, Nouér SA, Pellegrino FLPC, Moreira BM, Maiolino A, Nucci M (2013) Ciprofloxacin prophylaxis in high risk neutropenic patients: effects on outcomes, antimicrobial therapy and resistance. BMC Infect Dis 13:356CrossRefGoogle Scholar
  14. 14.
    Klastersky J, Ameye L, Maertens J et al (2007) Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents 30(Suppl 1):S51–S59CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Stuck AE, Minder CE, Frey FJ (1989) Risk of infectious complications in patients taking glucocorticosteroids. Rev Infect Dis 11:954–963CrossRefGoogle Scholar
  17. 17.
    Finkelsztein EJ, Jones DS, Ma KC et al (2017) Comparison of qSOFA and SIRS for predicting adverse outcomes of patients with suspicion of sepsis outside the intensive care unit. Crit Care Lond Engl 21:73CrossRefGoogle Scholar
  18. 18.
    Magiorakos A-P, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 18:268–281Google Scholar
  19. 19.
    EUCAST: Breakpoints tables for interpretation of MICs and zone diameters Version 4.0, valid from 2014-31-12. Available at: Accessed 26 Dec 2018
  20. 20.
    Société Française de Microbiologie. Comité de l’antibiogramme de la Société Française de Microbiologie, Recommandations 2017. 2017; Available at: Accessed 27 Mar 2018
  21. 21.
    Roth A, Wiklund AE, Pålsson AS, Melander EZ, Wullt M, Cronqvist J, Walder M, Sturegård E (2010) Reducing blood culture contamination by a simple informational intervention. J Clin Microbiol 48:4552–4558CrossRefGoogle Scholar
  22. 22.
    Kern WV, Marchetti O, Drgona L, Akan H, Aoun M, Akova M, de Bock R, Paesmans M, Viscoli C, Calandra T (2013) Oral antibiotics for fever in low-risk neutropenic patients with cancer: a double-blind, randomized, multicenter trial comparing single daily moxifloxacin with twice daily ciprofloxacin plus amoxicillin/clavulanic acid combination therapy--EORTC infectious diseases group trial XV. J Clin Oncol Off J Am Soc Clin Oncol 31:1149–1156CrossRefGoogle Scholar
  23. 23.
    Sebban C, Dussart S, Fuhrmann C et al (2008) Oral moxifloxacin or intravenous ceftriaxone for the treatment of low-risk neutropenic fever in cancer patients suitable for early hospital discharge. Support Care Cancer 16:1017–1023CrossRefGoogle Scholar
  24. 24.
    Cornely OA, Wicke T, Seifert H, Bethe U, Schwonzen M, Reichert D, Ullmann AJ, Karthaus M, Breuer K, Salzberger B, Diehl V, Fätkenheuer G (2004) Once-daily oral levofloxacin monotherapy versus piperacillin/tazobactam three times a day: a randomized controlled multicenter trial in patients with febrile neutropenia. Int J Hematol 79:74–78CrossRefGoogle Scholar
  25. 25.
    May L, Klein EY, Rothman RE, Laxminarayan R (2014) Trends in antibiotic resistance in coagulase-negative staphylococci in the United States, 1999 to 2012. Antimicrob Agents Chemother 58:1404–1409CrossRefGoogle Scholar
  26. 26.
    Santos Sanches I, Mato R, de Lencastre H, Tomasz A, CEM/NET Collaborators and the International Collaborators. Patterns of multidrug resistance among methicillin-resistant hospital isolates of coagulase-positive and coagulase-negative staphylococci collected in the international multicenter study RESIST in 1997 and 1998. Microb Drug Resist Larchmt N 2000; 6:199–211Google Scholar
  27. 27.
    Deresinski S (2005) Methicillin-resistant Staphylococcus aureus: an evolutionary, epidemiologic, and therapeutic odyssey. Clin Infect Dis Off Publ Infect Dis Soc Am 40:562–573CrossRefGoogle Scholar
  28. 28.
    Dautzenberg MJD, Ossewaarde JM, de Greeff SC, Troelstra A, Bonten MJM (2016) Risk factors for the acquisition of OXA-48-producing Enterobacteriaceae in a hospital outbreak setting: a matched case-control study. J Antimicrob Chemother 71:2273–2279CrossRefGoogle Scholar
  29. 29.
    Cattaneo C, Quaresmini G, Casari S, Capucci MA, Micheletti M, Borlenghi E, Signorini L, Re A, Carosi G, Rossi G (2008) Recent changes in bacterial epidemiology and the emergence of fluoroquinolone-resistant Escherichia coli among patients with haematological malignancies: results of a prospective study on 823 patients at a single institution. J Antimicrob Chemother 61:721–728CrossRefGoogle Scholar
  30. 30.
    Ray GT, Baxter R, DeLorenze GN (2005) Hospital-level rates of fluoroquinolone use and the risk of hospital-acquired infection with ciprofloxacin-nonsusceptible Pseudomonas aeruginosa. Clin Infect Dis Off Publ Infect Dis Soc Am 41:441–449CrossRefGoogle Scholar
  31. 31.
    Sarma JB, Marshall B, Cleeve V, Tate D, Oswald T, Woolfrey S (2015) Effects of fluoroquinolone restriction (from 2007 to 2012) on resistance in Enterobacteriaceae: interrupted time-series analysis. J Hosp Infect 91:68–73CrossRefGoogle Scholar
  32. 32.
    Lafaurie M, Porcher R, Donay J-L, Touratier S, Molina J-M (2012) Reduction of fluoroquinolone use is associated with a decrease in methicillin-resistant Staphylococcus aureus and fluoroquinolone-resistant Pseudomonas aeruginosa isolation rates: a 10 year study. J Antimicrob Chemother 67:1010–1015CrossRefGoogle Scholar
  33. 33.
    Uys A, Rapoport BL, Anderson R (2004) Febrile neutropenia: a prospective study to validate the Multinational Association of Supportive Care of Cancer (MASCC) risk-index score. Support Care Cancer 12:555–560CrossRefGoogle Scholar
  34. 34.
    Klastersky J (2004) Management of fever in neutropenic patients with different risks of complications. Clin Infect Dis Off Publ Infect Dis Soc Am 39(Suppl 1):S32–S37CrossRefGoogle Scholar
  35. 35.
    Rosa RG, dos Santos RP, Goldani LZ (2014) Mortality related to coagulase-negative staphylococcal bacteremia in febrile neutropenia: a cohort study. Can J Infect Dis Med Microbiol 25:e14–e17CrossRefGoogle Scholar
  36. 36.
    Gedik H, Şimşek F, Kantürk A et al (2014) Bloodstream infections in patients with hematological malignancies: which is more fatal – cancer or resistant pathogens? Ther Clin Risk Manag 10:743–752CrossRefGoogle Scholar
  37. 37.
    Samonis G, Vardakas KZ, Maraki S et al (2013) A prospective study of characteristics and outcomes of bacteremia in patients with solid organ or hematologic malignancies. Support Care Cancer 21:2521–2526CrossRefGoogle Scholar
  38. 38.
    Gudiol C, Bodro M, Simonetti A et al (2013) Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 19:474–479Google Scholar
  39. 39.
    Zhang S, Wang Q, Ling Y, Hu X (2015) Fluoroquinolone resistance in bacteremic and low risk febrile neutropenic patients with cancer. BMC Cancer 15 Available at:
  40. 40.
    Todeschini G, Franchini M, Tecchio C et al (1998) Improved prognosis of Pseudomonas aeruginosa bacteremia in 127 consecutive neutropenic patients with hematologic malignancies. Int J Infect Dis IJID Off Publ Int Soc Infect Dis 3:99–104Google Scholar
  41. 41.
    Aliaga L, Mediavilla JD, Cobo F (2002) A clinical index predicting mortality with Pseudomonas aeruginosa bacteraemia. J Med Microbiol 51:615–619CrossRefGoogle Scholar
  42. 42.
    Kang C-I, Kim S-H, Kim H-B et al (2003) Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis Off Publ Infect Dis Soc Am 37:745–751CrossRefGoogle Scholar
  43. 43.
    Elting LS, Rubenstein EB, Rolston KV, Bodey GP (1997) Outcomes of bacteremia in patients with cancer and neutropenia: observations from two decades of epidemiological and clinical trials. Clin Infect Dis Off Publ Infect Dis Soc Am 25:247–259CrossRefGoogle Scholar
  44. 44.
    Kim M, Ahn S, Kim WY et al (2017) Predictive performance of the quick Sequential Organ Failure Assessment score as a screening tool for sepsis, mortality, and intensive care unit admission in patients with febrile neutropenia. Support Care Cancer 25:1557–1562CrossRefGoogle Scholar
  45. 45.
    European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe in 2014. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). 2015. Available at: Accessed 7 Apr 2018
  46. 46.
    Smith TJ, Bohlke K, Lyman GH, Carson KR, Crawford J, Cross SJ, Goldberg JM, Khatcheressian JL, Leighl NB, Perkins CL, Somlo G, Wade JL, Wozniak AJ, Armitage JO, American Society of Clinical Oncology (2015 Oct 1) Recommendations for the use of WBC growth factors: American Society of Clinical Oncology Clinical Practice Guideline update. J Clin Oncol 33(28):3199–3212. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Service d’oncologieCHU de PoitiersPoitiersFrance
  2. 2.Service de médecine interneCHU de PoitiersPoitiersFrance
  3. 3.Service de bactériologie, département des agents infectieuxCHU de PoitiersPoitiersFrance
  4. 4.Faculté de médecine et pharmacieUniversité de PoitiersPoitiersFrance
  5. 5.Service de maladies infectieuses et tropicalesCHU de PoitiersPoitiersFrance
  6. 6.INSERM U1070PoitiersFrance
  7. 7.Service de médecine interne et maladies infectieuses et tropicalesCentre hospitalier universitaire de PoitiersPoitiers CedexFrance

Personalised recommendations