Supportive Care in Cancer

, Volume 27, Issue 10, pp 3729–3737 | Cite as

Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview

  • Alexandre Chan
  • Daniel L. Hertz
  • Manuel Morales
  • Elizabeth J. Adams
  • Sharon Gordon
  • Chia Jie Tan
  • Nathan P. Staff
  • Jayesh Kamath
  • Jeong Oh
  • Shivani Shinde
  • Doreen Pon
  • Niharkia Dixit
  • James D’Olimpio
  • Cristina Dumitrescu
  • Margherita Gobbo
  • Kord Kober
  • Samantha Mayo
  • Linda Pang
  • Ishwaria Subbiah
  • Andreas S. Beutler
  • Katherine B. Peters
  • Charles Loprinzi
  • Maryam B. LustbergEmail author
Review Article


Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating condition associated with a number of chemotherapeutic agents. Drugs commonly implicated in the development of CIPN include platinum agents, taxanes, vinca alkaloids, bortezomib, and thalidomide analogues. As a drug response can vary between individuals, it is hypothesized that an individual’s specific genetic variants could impact the regulation of genes involved in drug pharmacokinetics, ion channel functioning, neurotoxicity, and DNA repair, which in turn affect CIPN development and severity. Variations of other molecular markers may also affect the incidence and severity of CIPN. Hence, the objective of this review was to summarize the known biological (molecular and genomic) predictors of CIPN and discuss the means to facilitate progress in this field.


Chemotherapy-induced peripheral neuropathy CIPN Neuropathy 


Compliance with ethical standards

Conflict of interest

This project was not specifically funded by any organization, but a couple of the investigators are generally funded by the National Institutes of Health/National Cancer Institute (R01CA211887, R01CACA189947)


  1. 1.
    Gewandter JS, Fan L, Magnuson A et al (2013) Falls and functional impairments in cancer survivors with chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study. Support Care Cancer 21(7):2059–2066CrossRefGoogle Scholar
  2. 2.
    Miaskowski C, Mastick J, Paul SM et al (2018) Impact of chemotherapy-induced neurotoxicities on adult cancer survivors’ symptom burden and quality of life. J Cancer Surviv 12(2):234–245CrossRefGoogle Scholar
  3. 3.
    Seretny M, Currie GL, Sena ES et al (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain. 155(12):2461–2470CrossRefGoogle Scholar
  4. 4.
    Molassiotis A, Cheng HL, Leung KT et al (2019) Risk factors for chemotherapy-induced peripheral neuropathy in patients receiving taxane- and platinum-based chemotherapy. Brain Behav 9:e01312CrossRefGoogle Scholar
  5. 5.
    Bulls HW, Hoogland AI, Kennedy B et al (2019) A longitudinal examination of associations between age and chemotherapy-induced peripheral neuropathy in patients with gynecologic cancer. Gynecol Oncol 152(2):310–315CrossRefGoogle Scholar
  6. 6.
    Hershman DL, Till C, Wright JD et al (2016) Comorbidities and risk of chemotherapy-induced peripheral neuropathy among participants 65 years or older in southwest oncology group clinical trials. J Clin Oncol 34(25):3014–3022CrossRefGoogle Scholar
  7. 7.
    Raphael MJ, Fischer HD, Fung K et al (2017) Neurotoxicity outcomes in a population-based cohort of elderly patients treated with adjuvant oxaliplatin for colorectal cancer. Clin Colorectal Cancer 16(4):397–404 e391CrossRefGoogle Scholar
  8. 8.
    Argyriou AA, Polychronopoulos P, Koutras A et al (2006) Is advanced age associated with increased incidence and severity of chemotherapy-induced peripheral neuropathy? Support Care Cancer 14(3):223–229CrossRefGoogle Scholar
  9. 9.
    Nurgalieva Z, Xia R, Liu CC, Burau K, Hardy D, Du XL (2010) Risk of chemotherapy-induced peripheral neuropathy in large population-based cohorts of elderly patients with breast, ovarian, and lung cancer. Am J Ther 17(2):148–158CrossRefGoogle Scholar
  10. 10.
    Cox-Martin E, Trahan LH, Cox MG, Dougherty PM, Lai EA, Novy DM (2017) Disease burden and pain in obese cancer patients with chemotherapy-induced peripheral neuropathy. Support Care Cancer 25(6):1873–1879CrossRefGoogle Scholar
  11. 11.
    Schneider BP, Li L, Radovich M et al (2015) Genome-wide association studies for taxane-induced peripheral neuropathy in ECOG-5103 and ECOG-1199. Clin Cancer Res 21(22):5082–5091CrossRefGoogle Scholar
  12. 12.
    Starobova H, Vetter I (2017) Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 10:174CrossRefGoogle Scholar
  13. 13.
    Cao Y, Zhang G, Wang P et al (2017) Clinical significance of UGT1A1 polymorphism and expression of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A in gastric cancer. BMC Gastroenterol 17(1):2CrossRefGoogle Scholar
  14. 14.
    Zhang X, Jiang LP, Yin Y, Wang YD (2014) XRCC1 and XPD genetic polymorphisms and clinical outcomes of gastric cancer patients treated with oxaliplatin-based chemotherapy: a meta-analysis. Tumor Biol 35(6):5637–5645CrossRefGoogle Scholar
  15. 15.
    Savas S, Kim DY, Ahmad MF, Shariff M, Ozcelik H (2004) Identifying functional genetic variants in DNA repair pathway using protein conservation analysis. Cancer Epidemiol Biomark Prev 13(5):801–807Google Scholar
  16. 16.
    Whitehouse CJ, Taylor RM, Thistlethwaite A et al (2001) XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell. 104(1):107–117CrossRefGoogle Scholar
  17. 17.
    Song X, Wang S, Hong X et al (2017) Single nucleotide polymorphisms of nucleotide excision repair pathway are significantly associated with outcomes of platinum-based chemotherapy in lung cancer. Sci Rep 7(1):11785CrossRefGoogle Scholar
  18. 18.
    Custodio A, Moreno-Rubio J, Aparicio J et al (2014) Pharmacogenetic predictors of severe peripheral neuropathy in colon cancer patients treated with oxaliplatin-based adjuvant chemotherapy: a GEMCAD group study. Ann Oncol 25(2):398–403CrossRefGoogle Scholar
  19. 19.
    Johnson C, Pankratz VS, Velazquez AI et al (2015) Candidate pathway-based genetic association study of platinum and platinum-taxane related toxicity in a cohort of primary lung cancer patients. J Neurol Sci 349(1–2):124–128CrossRefGoogle Scholar
  20. 20.
    Hertz D, Kidwell K, K. V, D. S, NL. H. (2017) Association of systemic paclitaxel concentrations with severity and progression of paclitaxel-induced peripheral neuropathy. San Antonio Breast Cancer Symposium. 2017.Google Scholar
  21. 21.
    Boora GK, Kanwar R, Kulkarni AA et al (2016) Testing of candidate single nucleotide variants associated with paclitaxel neuropathy in the trial NCCTG N08C1 (Alliance). Cancer Med 5(4):631–639CrossRefGoogle Scholar
  22. 22.
    Abraham JE, Guo Q, Dorling L et al (2014) Replication of genetic polymorphisms reported to be associated with taxane-related sensory neuropathy in patients with early breast cancer treated with Paclitaxel. Clin Cancer Res 20(9):2466–2475CrossRefGoogle Scholar
  23. 23.
    Lam SW, Frederiks CN, van der Straaten T, Honkoop AH, Guchelaar HJ, Boven E (2016) Genotypes of CYP2C8 and FGD4 and their association with peripheral neuropathy or early dose reduction in paclitaxel-treated breast cancer patients. Br J Cancer 115(11):1335–1342CrossRefGoogle Scholar
  24. 24.
    Boora GK, Kulkarni AA, Kanwar R et al (2015) Association of the Charcot-Marie-Tooth disease gene ARHGEF10 with paclitaxel induced peripheral neuropathy in NCCTG N08CA (Alliance). J Neurol Sci 357(1–2):35–40CrossRefGoogle Scholar
  25. 25.
    Eckhoff L, Feddersen S, Knoop AS, Ewertz M, Bergmann TK (2015) Docetaxel-induced neuropathy: a pharmacogenetic case-control study of 150 women with early-stage breast cancer. Acta Oncol 54(4):530–537CrossRefGoogle Scholar
  26. 26.
    Kus T, Aktas G, Kalender ME et al (2016) Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel. OncoTargets and Ther 9:5073–5080CrossRefGoogle Scholar
  27. 27.
    van Rossum AGJ, Kok M, McCool D et al (2017) Independent replication of polymorphisms predicting toxicity in breast cancer patients randomized between dose-dense and docetaxel-containing adjuvant chemotherapy. Oncotarget. 8(69):113531–113542Google Scholar
  28. 28.
    Hertz DL, Roy S, Jack J et al (2014) Genetic heterogeneity beyond CYP2C8*3 does not explain differential sensitivity to paclitaxel-induced neuropathy. Breast Cancer Res Treat 145(1):245–254CrossRefGoogle Scholar
  29. 29.
    Stock W, Diouf B, Crews KR et al (2017) An inherited genetic variant in CEP72 promoter predisposes to vincristine-induced peripheral neuropathy in adults with acute lymphoblastic leukemia. Clin Pharmacol Ther 101(3):391–395CrossRefGoogle Scholar
  30. 30.
    Wright GEB, Amstutz U, Drogemoller BI, et al. Pharmacogenomics of vincristine-induced peripheral neuropathy implicates pharmacokinetic and inherited neuropathy genes. Clin Pharmacol Ther. 2018;105(2):402-410Google Scholar
  31. 31.
    Gutierrez-Camino A, Martin-Guerrero I, Lopez-Lopez E et al (2016) Lack of association of the CEP72 rs924607 TT genotype with vincristine-related peripheral neuropathy during the early phase of pediatric acute lymphoblastic leukemia treatment in a Spanish population. Pharmacogenet Genomics 26(2):100–102CrossRefGoogle Scholar
  32. 32.
    Zgheib NK, Ghanem KM, Tamim H et al (2018) Genetic polymorphisms in candidate genes are not associated with increased vincristine-related peripheral neuropathy in Arab children treated for acute childhood leukemia: a single institution study. Pharmacogenet Genomics 28(8):189–195CrossRefGoogle Scholar
  33. 33.
    Kelley MR, Wikel JH, Guo C et al (2016) Identification and characterization of new chemical entities targeting apurinic/apyrimidinic endonuclease 1 for the prevention of chemotherapy-induced peripheral neuropathy. J Pharmacol Exp Ther 359(2):300–309CrossRefGoogle Scholar
  34. 34.
    Kulkarni AA, Boora G, Kanwar R et al (2015) RWDD3 and TECTA variants not linked to paclitaxel induced peripheral neuropathy in North American trial Alliance N08C1. Acta Oncol 54(8):1227–1229CrossRefGoogle Scholar
  35. 35.
    Moore AS, Norris R, Price G et al (2011) Vincristine pharmacodynamics and pharmacogenetics in children with cancer: a limited-sampling, population modelling approach. J Paediatr Child Health 47(12):875–882CrossRefGoogle Scholar
  36. 36.
    Skiles JL, Chiang C, Li CH, et al. (2018) CYP3A5 genotype and its impact on vincristine pharmacokinetics and development of neuropathy in Kenyan children with cancer. Pediatr Blood Cancer 65(3).Google Scholar
  37. 37.
    Moreau P, Pylypenko H, Grosicki S et al (2011) Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol 12(5):431–440CrossRefGoogle Scholar
  38. 38.
    Egbelakin A, Ferguson MJ, MacGill EA et al (2011) Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 56(3):361–367CrossRefGoogle Scholar
  39. 39.
    Campo C, da Silva Filho MI, Weinhold N et al (2018) Bortezomib-induced peripheral neuropathy: a genome-wide association study on multiple myeloma patients. Hematol Oncol 36(1):232–237CrossRefGoogle Scholar
  40. 40.
    Guilhaumou R, Solas C, Bourgarel-Rey V et al (2011) Impact of plasma and intracellular exposure and CYP3A4, CYP3A5, and ABCB1 genetic polymorphisms on vincristine-induced neurotoxicity. Cancer Chemother Pharmacol 68(6):1633–1638CrossRefGoogle Scholar
  41. 41.
    Favis R, Sun Y, van de Velde H et al (2011) Genetic variation associated with bortezomib-induced peripheral neuropathy. Pharmacogenet Genomics 21(3):121–129CrossRefGoogle Scholar
  42. 42.
    Magrangeas F, Kuiper R, Avet-Loiseau H et al (2016) A genome-wide association study identifies a novel locus for bortezomib-induced peripheral neuropathy in european patients with multiple myeloma. Clin Cancer Res 22(17):4350–4355CrossRefGoogle Scholar
  43. 43.
    Johnson DC, Corthals SL, Walker BA et al (2011) Genetic factors underlying the risk of thalidomide-related neuropathy in patients with multiple myeloma. J Clin Oncol 29(7):797–804CrossRefGoogle Scholar
  44. 44.
    Cibeira MT, de Larrea CF, Navarro A et al (2011) Impact on response and survival of DNA repair single nucleotide polymorphisms in relapsed or refractory multiple myeloma patients treated with thalidomide. Leuk Res 35(9):1178–1183CrossRefGoogle Scholar
  45. 45.
    Gregg RW, Molepo JM, Monpetit VJ et al (1992) Cisplatin neurotoxicity: the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. J Clin Oncol 10(5):795–803CrossRefGoogle Scholar
  46. 46.
    de Wit R, Roberts JT, Wilkinson PM et al (2001) Equivalence of three or four cycles of bleomycin, etoposide, and cisplatin chemotherapy and of a 3- or 5-day schedule in good-prognosis germ cell cancer: a randomized study of the European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group and the Medical Research Council. J Clin Oncol 19(6):1629–1640CrossRefGoogle Scholar
  47. 47.
    Nichols CR, Williams SD, Loehrer PJ et al (1991) Randomized study of cisplatin dose intensity in poor-risk germ cell tumors: a Southeastern Cancer Study Group and Southwest Oncology Group protocol. J Clin Oncol 9(7):1163–1172CrossRefGoogle Scholar
  48. 48.
    Sprowl JA, Ciarimboli G, Lancaster CS et al (2013) Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc Natl Acad Sci U S A 110(27):11199–11204CrossRefGoogle Scholar
  49. 49.
    Hucke A, Ciarimboli G (2016) The role of transporters in the toxicity of chemotherapeutic drugs: focus on transporters for organic cations. J Clin Pharmacol 56(Suppl 7):S157–S172CrossRefGoogle Scholar
  50. 50.
    Chalret du Rieu Q, White-Koning M, Picaud L et al (2014) Population pharmacokinetics of peritoneal, plasma ultrafiltrated and protein-bound oxaliplatin concentrations in patients with disseminated peritoneal cancer after intraperitoneal hyperthermic chemoperfusion of oxaliplatin following cytoreductive surgery: correlation between oxaliplatin exposure and thrombocytopenia. Cancer Chemother Pharmacol 74(3):571–582CrossRefGoogle Scholar
  51. 51.
    Shord SS, Bernard SA, Lindley C et al (2002) Oxaliplatin biotransformation and pharmacokinetics: a pilot study to determine the possible relationship to neurotoxicity. Anticancer Res 22(4):2301–2309Google Scholar
  52. 52.
    Ishibashi K, Okada N, Miyazaki T, Sano M, Ishida H (2010) Effect of calcium and magnesium on neurotoxicity and blood platinum concentrations in patients receiving mFOLFOX6 therapy: a prospective randomized study. Int J Clin Oncol 15(1):82–87CrossRefGoogle Scholar
  53. 53.
    Albers JW, Chaudhry V, Cavaletti G, Donehower RC (2014) Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev 3:CD005228Google Scholar
  54. 54.
    Schloss J, Colosimo M, Vitetta L (2016) New insights into potential prevention and management options for chemotherapy-induced peripheral neuropathy. Asia Pac J Oncol Nurs 3(1):73–85CrossRefGoogle Scholar
  55. 55.
    Frederiks CN, Lam SW, Guchelaar HJ, Boven E (2015) Genetic polymorphisms and paclitaxel- or docetaxel-induced toxicities: a systematic review. Cancer Treat Rev 41(10):935–950CrossRefGoogle Scholar
  56. 56.
    Mielke S, Sparreboom A, Steinberg SM et al (2005) Association of paclitaxel pharmacokinetics with the development of peripheral neuropathy in patients with advanced cancer. Clin Cancer Res 11(13):4843–4850CrossRefGoogle Scholar
  57. 57.
    Joerger M, von Pawel J, Kraff S et al (2016) Open-label, randomized study of individualized, pharmacokinetically (PK)-guided dosing of paclitaxel combined with carboplatin or cisplatin in patients with advanced non-small-cell lung cancer (NSCLC). Ann Oncol 27(10):1895–1902CrossRefGoogle Scholar
  58. 58.
    Agergaard K, Mau-Sorensen M, Stage TB et al (2017) Clopidogrel-paclitaxel drug-drug interaction: a pharmacoepidemiologic study. Clin Pharmacol Ther 102(3):547–553CrossRefGoogle Scholar
  59. 59.
    Matsuo M, Ito H, Takemura Y et al (2017) Increased risk of paclitaxel-induced peripheral neuropathy in patients using clopidogrel: a retrospective pilot study. J Anesth 31(4):631–635CrossRefGoogle Scholar
  60. 60.
    Wilkinson DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2(3):155–164CrossRefGoogle Scholar
  61. 61.
    Chhibber A, Mefford J, Stahl EA et al (2014) Polygenic inheritance of paclitaxel-induced sensory peripheral neuropathy driven by axon outgrowth gene sets in CALGB 40101 (Alliance). Pharm J 14(4):336–342Google Scholar
  62. 62.
    Schneider BP, Li L, Miller K, et al. (2011) Genetic associations with taxane-induced neuropathy by a genome-wide association study (GWAS) in E5103. ASCO Meeting Abstract 29(15_suppl):1000.Google Scholar
  63. 63.
    Bergmann TK, Vach W, Feddersen S et al (2012) GWAS-based association between RWDD3 and TECTA variants and paclitaxel induced neuropathy could not be confirmed in Scandinavian ovarian cancer patients. Acta Oncol 52(4):871–874 1–3CrossRefGoogle Scholar
  64. 64.
    Schneider BP, Lai D, Shen F et al (2016) Charcot-Marie-Tooth gene, SBF2, associated with taxane-induced peripheral neuropathy in African Americans. Oncotarget. 7(50):82244–82253CrossRefGoogle Scholar
  65. 65.
    Sucheston-Campbell LE, Clay-Gilmour AI, Barlow WE et al (2018) Genome-wide meta-analyses identifies novel taxane-induced peripheral neuropathy-associated loci. Pharmacogenet Genomics 28(2):49–55CrossRefGoogle Scholar
  66. 66.
    Leblanc AF, Sprowl JA, Alberti P et al (2018) OATP1B2 deficiency protects against paclitaxel-induced neurotoxicity. J Clin Invest 128(2):816–825CrossRefGoogle Scholar
  67. 67.
    Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R (2007) Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish randomised trial in ovarian cancer. J Clin Oncol 25(29):4528–4535CrossRefGoogle Scholar
  68. 68.
    Hertz DL, Owzar K, Lessans S et al (2016) Pharmacogenetic discovery in CALGB (Alliance) 90401 and mechanistic validation of a VAC14 polymorphism that increases risk of docetaxel-induced neuropathy. Clin Cancer Res 22(19):4890–4900CrossRefGoogle Scholar
  69. 69.
    Lenk GM, Szymanska K, Debska-Vielhaber G et al (2016) Biallelic mutations of VAC14 in pediatric-onset neurological disease. Am J Hum Genet 99(1):188–194CrossRefGoogle Scholar
  70. 70.
    Garcia-Sanz R, Corchete LA, Alcoceba M et al (2017) Prediction of peripheral neuropathy in multiple myeloma patients receiving bortezomib and thalidomide: a genetic study based on a single nucleotide polymorphism array. Hematol Oncol 35(4):746–751CrossRefGoogle Scholar
  71. 71.
    Richardson PG, Schlossman RL, Weller E et al (2002) Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 100(9):3063–3067CrossRefGoogle Scholar
  72. 72.
    Anderson KC (2005) Lenalidomide and thalidomide: mechanisms of action--similarities and differences. Semin Hematol 42(4 Suppl 4):S3–S8CrossRefGoogle Scholar
  73. 73.
    Ng T, Chan M, Khor CC, Ho HK, Chan A (2014) The genetic variants underlying breast cancer treatment-induced chronic and late toxicities: a systematic review. Cancer Treat Rev 40(10):1199–1214CrossRefGoogle Scholar
  74. 74.
    Themistocleous AC, Crombez G, Baskozos G, Bennett DL (2018) Using stratified medicine to understand, diagnose, and treat neuropathic pain. Pain. 159(Suppl 1):S31–S42CrossRefGoogle Scholar
  75. 75.
    Little J, Higgins JP, Ioannidis JP et al (2009) STrengthening the REporting of Genetic Association Studies (STREGA): an extension of the STROBE statement. PLoS Med 6(2):e22CrossRefGoogle Scholar
  76. 76.
    Backshall A, Sharma R, Clarke SJ, Keun HC (2011) Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine. Clin Cancer Res: an official journal of the American Association for Cancer Research 17(9):3019–3028CrossRefGoogle Scholar
  77. 77.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126(4):663–676CrossRefGoogle Scholar
  78. 78.
    Hu S, Huang KM, Adams EJ, Loprinzi CL, Lustberg MB (2019) Recent developments of novel pharmacologic therapeutics for prevention of chemotherapy-induced peripheral neuropathy. Clin Cancer ResGoogle Scholar
  79. 79.
    de Andres-Galiana EJ, Fernandez-Martinez JL, Sonis ST (2016) Sensitivity analysis of gene ranking methods in phenotype prediction. J Biomed Inform 64:255–264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alexandre Chan
    • 1
    • 2
  • Daniel L. Hertz
    • 3
  • Manuel Morales
    • 4
  • Elizabeth J. Adams
    • 5
  • Sharon Gordon
    • 6
    • 7
  • Chia Jie Tan
    • 1
    • 2
  • Nathan P. Staff
    • 8
  • Jayesh Kamath
    • 9
  • Jeong Oh
    • 10
  • Shivani Shinde
    • 11
    • 12
  • Doreen Pon
    • 13
  • Niharkia Dixit
    • 14
    • 15
  • James D’Olimpio
    • 16
    • 17
  • Cristina Dumitrescu
    • 18
  • Margherita Gobbo
    • 19
  • Kord Kober
    • 14
    • 20
  • Samantha Mayo
    • 21
  • Linda Pang
    • 10
  • Ishwaria Subbiah
    • 10
  • Andreas S. Beutler
    • 8
  • Katherine B. Peters
    • 22
  • Charles Loprinzi
    • 8
  • Maryam B. Lustberg
    • 5
    Email author
  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.National Cancer Centre SingaporeSingaporeSingapore
  3. 3.University of MichiganAnn ArborUSA
  4. 4.University Hospital Ntra. Sra. de CandelariaSanta Cruz de TenerifeSpain
  5. 5.The Ohio State University Comprehensive Cancer CenterColumbusUSA
  6. 6.University of ConnecticutStorrsUSA
  7. 7.East Carolina UniversityGreenvilleUSA
  8. 8.Mayo Clinic RochesterFloridaUSA
  9. 9.University of Connecticut Health CenterStorrsUSA
  10. 10.MD Anderson Cancer CenterHoustonUSA
  11. 11.University of ColoradoColoradoUSA
  12. 12.VA Eastern Colorado Health Care SystemsAuroraUSA
  13. 13.Western University of Health SciencesPomonaUSA
  14. 14.University of California San FranciscoSan FranciscoUSA
  15. 15.Zuckerberg San Francisco General HospitalSan FranciscoUSA
  16. 16.Northwell Cancer InstituteNew Hyde ParkUSA
  17. 17.Zucker School of Medicine at HofstraHempsteadUSA
  18. 18.Marie Curie Hospital, LondonUK
  19. 19.University of TriesteTriesteItaly
  20. 20.Helen Diller Comprehensive Cancer CentreSan FranciscoUSA
  21. 21.University of TorontoTorontoCanada
  22. 22.Preston Robert Tisch Brain Tumor CentreDurhamUSA

Personalised recommendations