Advertisement

Supportive Care in Cancer

, Volume 27, Issue 10, pp 3639–3645 | Cite as

Intranasal therapy with opioids for children and adolescents with cancer: results from clinical studies

  • Silvia TriaricoEmail author
  • Michele Antonio Capozza
  • Stefano Mastrangelo
  • Giorgio Attinà
  • Palma Maurizi
  • Antonio Ruggiero
Review Article

Abstract

Opioids are essential for the treatment of pain, which is a serious symptom for children and adolescents affected by cancer. Intranasal opioids may be very useful for the treatment of breakthrough pain in children and adolescents with cancer, for their little invasiveness, ease of administration, rapid onset of action, and high bioavailability. Intranasal drug delivery may be influenced by anatomical and physiological factors (nasal mucosa absorption area, mucociliary clearance, enzymatic activity, anatomical anomalies, chronic or inflammatory alterations of nasal mucosa), drug-related factors (molecular weight, solubility), and delivery device. Fentanyl is a lipophilic opioid commonly proposed for intranasal use among pediatric patients, but no studies have been conducted yet about intranasal use of other available opioids for management of pediatric cancer pain. In this review, we analyze several elements which may influence absorption of intranasal opioids in children and adolescents, with a focus on pharmacokinetics and therapeutic aspects of each opioid currently available for intranasal use.

Keywords

Intranasal Opioids Cancer pain Pediatric patients Fentanyl 

Notes

Funding information

This work was supported by Fondazione per l’Oncologia Pediatrica.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mercadante S (2004) Cancer pain management in children. Palliat Med 18:654–662CrossRefGoogle Scholar
  2. 2.
    Ruggiero A, Coccia P, Arena R, Maurizi P, Battista A, Ridola V, Attinà G, Riccardi R (2013) Efficacy and safety of transdermal buprenorphine in the management of children with cancer-related pain. Pediatr Blood Cancer 60:433–437CrossRefGoogle Scholar
  3. 3.
    Murphy A, O'Sullivan R, Wakai A et al (2014) Intranasal fentanyl for the management of acute pain in children. Cochrane Database Syst Rev 10(10):CD009942.  https://doi.org/10.1002/14651858.CD009942.pub2 Google Scholar
  4. 4.
    Del Pizzo J, Callahan JM (2014) Intranasal medications in pediatric emergency medicine. Pediatr Emerg Care 30(7):496–501; quiz 502–4.  https://doi.org/10.1097/PEC.0000000000000171
  5. 5.
    Morrison EE, Costanzo RM (1990) Morphology of the human olfactory epithelium. J Comp Neurol 297(1):1–13CrossRefGoogle Scholar
  6. 6.
    Salib RJ, Harries PG, Nair SB, Howarth PH (2008) Mechanisms and mediators of nasal symptoms in non-allergic rhinitis. Clin Exp Allergy 38(3):393–404CrossRefGoogle Scholar
  7. 7.
    Newman SP, Morén F, Clarke SW (1987) Deposition pattern from a nasal pump spray. Rhinology 25(2):77–82Google Scholar
  8. 8.
    Wolfe TR, Braude DA (2010) Intranasal medication delivery for children: a brief review and update. Pediatrics 126(3):532–537CrossRefGoogle Scholar
  9. 9.
    Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC (2007) Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 337(1–2):1–24CrossRefGoogle Scholar
  10. 10.
    Arora P, Sharma S, Garg S (2002) Permeability issues in nasal drug delivery. Drug Discov Today 7(18):967–975CrossRefGoogle Scholar
  11. 11.
    Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453(1):167–180CrossRefGoogle Scholar
  12. 12.
    Jiang L, Gao L, Wang X, Tang L, Ma J (2010) The application of mucoadhesive polymers in nasal drug delivery. Drug Dev Ind Pharm 36(3):323–336CrossRefGoogle Scholar
  13. 13.
    Zhang X, Zhang QY, Liu D et al (2005) Expression of cytochrome p450 and other biotransformation genes in fetal and adult human nasal mucosa. Drug Metab Dispos 33:1423–1428CrossRefGoogle Scholar
  14. 14.
    Pandey RK, Bahetwar SK, Saksena AK, Chandra G (2011) A comparative evaluation of drops versus atomized administration of intranasal ketamine for the procedural sedation of young uncooperative pediatric dental patients: a prospective crossover trial. J Clin Pediatr Dent Fall 36(1):79–84CrossRefGoogle Scholar
  15. 15.
    Leow KP, Smith MT, Watt JA, Williams BE, Cramond T (1992) Comparative oxycodone pharmacokinetics in humans after intravenous, oral, and rectal administration. Ther Drug Monit 14:479–484CrossRefGoogle Scholar
  16. 16.
    Tong X, Dong J, Shang Y, Inthavong K, Tu J (2016) Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity. Comput Biol Med 1(77):40–48CrossRefGoogle Scholar
  17. 17.
    Mercadante S, Portenoy RK (2016) Breakthrough cancer pain: twenty-five years of study. Pain 157(12):2657–2663CrossRefGoogle Scholar
  18. 18.
    Westerling D, Persson C, Hoglund P (1995) Plasma concentrations of morphine, morphine-3-glucuronide, and morphine-6-glucuronide after intravenous and oral administration to healthy volunteers: relationship to nonanalgesic actions. Ther Drug Monit 17:287–301CrossRefGoogle Scholar
  19. 19.
    Illum L, Watts P, Fisher AN et al (2002) Intranasal delivery of morphine. J Pharmacol Exp Ther 301:391–400CrossRefGoogle Scholar
  20. 20.
    Pavis H, Wilcock A, Edgecombe J, Carr D, Manderson C, Church A, Fisher A (2002) Pilot study of nasal morphine–chitosan for the relief of breakthrough pain in patients with cancer. J Pain Symptom Manag 24:598–602CrossRefGoogle Scholar
  21. 21.
    Stoker DG, Reber KR, Waltzman LS, Ernst C, Hamilton D, Gawarecki D, Mermelstein F, McNicol E, Wright C, Carr DB (2008) Analgesic efficacy and safety of morphine–chitosan nasal solution in patients with moderate to severe pain following orthopedic surgery. Pain Med 9:3–12CrossRefGoogle Scholar
  22. 22.
    Takala A, Kaasalainen V, Seppala T, Kalso E, Olkkola KT (1997) Pharmacokinetic comparison of intravenous and intranasal administration of oxycodone. Acta Anaesthesiol Scand 41:309–312CrossRefGoogle Scholar
  23. 23.
    Lofwall MR, Moody DE, Fang WB, Nuzzo PA, Walsh SL (2012) Pharmacokinetics of intranasal crushed OxyContin and intravenous oxycodone in nondependent prescription opioid abusers. J Clin Pharmacol 52:600–606CrossRefGoogle Scholar
  24. 24.
    Coda BA, Rudy AC, Archer SM, Wermeling DP (2003) Pharmacokinetics and bioavailability of single-dose intranasal hydromorphone hydrochloride in healthy volunteers. Anesth Analg 97:117–123CrossRefGoogle Scholar
  25. 25.
    Wermeling DP, Clinch T, Rudy AC, Dreitlein D, Suner S, Lacouture PG (2010) A multicenter, open-label, exploratory doseranging trial of intranasal hydromorphone for managing acute pain from traumatic injury. J Pain 11:24–31CrossRefGoogle Scholar
  26. 26.
    Kaasa S, Moksnes K, Nolte T et al (2010) Pharmacokinetics of intranasal fentanyl spray in patients with cancer and breakthrough pain. J Opioid Manag 6:17–26CrossRefGoogle Scholar
  27. 27.
    Kress HG, Oronska A, Kaczmarek Z et al (2009) Efficacy and tolerability of intranasal fentanyl spray 50 to 200 microg for breakthrough pain in patients with cancer: a phase III, multinational, randomized, doubleblind, placebo-controlled, crossover trial with a 10-month, open-label extension treatment period. Clin Ther 31:1177–1191CrossRefGoogle Scholar
  28. 28.
    Christrup LL, Foster D, Popper L, Troen T, Upton R (2008) Pharmacokinetics, efficacy, and tolerability of fentanyl following intranasal versus intravenous administration in adults undergoing third-molar extraction: a randomized, double-blind, double-dummy, two-way, cross-over study. Clin Ther 30:469–481CrossRefGoogle Scholar
  29. 29.
    Fisher A, Watling M, Smith A, Knight A (2010) Pharmacokinetics and relative bioavailability of fentanyl pectin nasal spray 100–800 mcg in healthy volunteers. Int J Clin Pharmacol Ther 48:860–867CrossRefGoogle Scholar
  30. 30.
    Fisher A, Watling M, Smith A, Knight A (2010) Pharmacokinetic comparisons of three nasal fentanyl formulations; pectin, chitosan and chitosan–poloxamer 188. Int J Clin Pharmacol Ther 48:138–145CrossRefGoogle Scholar
  31. 31.
    Nave R, Sides EH, Colberg T et al. (2009) Pharmacokinetics of intranasal fentanyl spray (INFS) in subjects with common cold. 6th congress of the European federation of IASP chapters, LisbonGoogle Scholar
  32. 32.
    Borland ML, Bergesio R, Pascoe EM, Turner S, Woodger S (2005) Intranasal fentanyl is an equivalent analgesic to oral morphine in paediatric burns patients for dressing changes: a randomised double blind crossover study. Burns 31:831–837CrossRefGoogle Scholar
  33. 33.
    Mudd S (2011) Intranasal fentanyl for pain management in children: a systematic review of the literature. J Pediatr Healthcare 25:316–322CrossRefGoogle Scholar
  34. 34.
    Hansen MS, Mathiesen O, Trautner S et al (2012) Intranasal fentanyl in the treatment of acute pain: a systematic review. Acta Anaesthesiol Scand 56:407–419CrossRefGoogle Scholar
  35. 35.
    Verghese ST, Hannallah RS, Brennan M, Yarvitz JL, Hummer KA, Patel KM, He J, McCarter R (2008) The effect of intranasal administration of remifentanil on intubating conditions and airway response after sevoflurane induction of anesthesia in children. Anesth Analg 107:1176–1118CrossRefGoogle Scholar
  36. 36.
    Lundeberg S, Roelofse JA (2011) Aspects of pharmacokinetics and pharmacodynamics of sufentanil in pediatric practice. Paediatr Anaesth 21(3):274–279CrossRefGoogle Scholar
  37. 37.
    Karl HW, Keifer AT, Rosenberge JL et al (1992) Comparison of the safety and efficacy of intranasal midazolam or sufentanil for preinduction of anesthesia in pediatric patients. Anesthesiology 76(2):209–215CrossRefGoogle Scholar
  38. 38.
    Zedie N, Amory DW, Wagner BK, O’Hara DA (1996) Comparison of intranasal midazolam and sufentanil premedication in pediatric outpatients. Clin Pharmacol Ther 59(3):341–348CrossRefGoogle Scholar
  39. 39.
    Nielsen BN, Friis SM, Romsing J et al (2014) Intranasal sufentanil/ketamine analgesia inchildren. Paediatr Anaesth 24(2):170–180CrossRefGoogle Scholar
  40. 40.
    Barton ED, Colwell CB, Wolfe T, Fosnocht D, Gravitz C, Bryan T, Dunn W, Benson J, Bailey J (2005) Efficacy of intranasal naloxone as a needleless alternative for treatment of opioid overdose in the prehospital setting. J Emerg Med 29:265–271CrossRefGoogle Scholar
  41. 41.
    Dowling J, Isbister GK, Kirkpatrick CM, Naidoo D, Graudins A (2008) Population pharmacokinetics of intravenous, intramuscular, and intranasal naloxone in human volunteers. Ther Drug Monit 30:490–496Google Scholar
  42. 42.
    Vanky E, Hellmundt L, Bondesson U, Eksborg S, Lundeberg S (2017) Pharmacokinetics after a single dose of naloxone administered as a nasal spray in healthy volunteers. Acta Anaesthesiol Scand 61(6):636–640CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Silvia Triarico
    • 1
    Email author
  • Michele Antonio Capozza
    • 1
  • Stefano Mastrangelo
    • 1
  • Giorgio Attinà
    • 1
  • Palma Maurizi
    • 1
  • Antonio Ruggiero
    • 1
  1. 1.Pediatric Oncology Unit, Foundation “A. Gemelli”Catholic University of Sacred HearthRomeItaly

Personalised recommendations