Supportive Care in Cancer

, Volume 27, Issue 2, pp 407–421 | Cite as

Interventions to obstructive long-term central venous catheter in cancer patients: a meta-analysis

  • Ana Cristina Carvalho da CostaEmail author
  • Jéssica Marques Ribeiro
  • Christiane Inocêncio Vasques
  • Graziela De Luca Canto
  • André Luís Porporatti
  • Paula Elaine Diniz dos Reis
Review Article



The aim of this systematic review was to identify the interventions used to treat obstructive events, whether thrombotic or non-thrombotic, in long-term central venous catheters (LT-CVC) in cancer patients.


This review included clinical trials and observational studies reporting the drugs used to treat obstructive catheter events in cancer patients. The authors developed specific search strategies for CINAHL, Cochrane CENTRAL, LILACS, PubMed, Scopus, Web of Science, Google Scholar, Open Grey, and ProQuest. The authors evaluated methodological quality of included studies using criteria from Cochrane’s Collaboration Tool and the Methodological Index for non-randomized studies (MINORS). The quality of evidence was analyzed by using GRADE’s software.


More than 9000 articles were found across the databases. After duplicates removed, the studies were selected in 2 phases. After that, only 15 studies were included. The drugs used to restoration of catheter function were urokinase (53.3%), alteplase (20%), tenecteplase (13.3%), reteplase (6.7%), recombinant urokinase (6.7%), and staphylokinase (6.7%). The results of meta-analysis of 14 studies showed an overall restoration rate of ~ 84%. The drug type meta-analysis demonstrates a success rate of ~ 84%, ~ 92%, and ~ 84% for urokinase, alteplase, and tenecteplase groups, respectively. The main methodological problem in included articles concerns the sample. The quality of evidence ranged from very low to high.


The most common interventions used to treat thrombotic catheter occlusion in cancer patients were urokinase and alteplase. No evidence was found about the treatment for non-thrombotic occlusion, thus elucidating an important gap to be investigated.


Vascular access devices Central venous catheters Catheter occlusion Therapeutics Systematic review 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

We declare that we have had full control of the primary data extracted for this study, and we agree to allow the journal to revise the data, if it will be requested.

Supplementary material

520_2018_4500_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 30 kb)
520_2018_4500_MOESM2_ESM.docx (39 kb)
ESM 2 (DOCX 38 kb)
520_2018_4500_MOESM3_ESM.docx (16 kb)
ESM 3 (DOCX 16 kb)


  1. 1.
    Williams A (2018) Catheter occlusion in home infusion. J Infus Nurs 41(1):52–57. CrossRefPubMedGoogle Scholar
  2. 2.
    Chang DH, Mammadov K, Hickethier T, Borggrefe J, Hellmich M, Maintz D, Kabbasch C (2017) Fibrin sheaths in central venous port catheters: treatment with low-dose, single injection of urokinase on an outpatient basis. Ther Clin Risk Manag 13:111–115. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Baskin JL, Reiss U, Wilimas JA, Metzger ML, Ribeiro RC, Pui CH, Howard SC (2012) Thrombolytic therapy for central venous catheter occlusion. Haematologica 97(5):641–650. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Massmann A, Jagoda P, Kranzhoefer N, Buecker A (2015) Local low-dose thrombolysis for safe and effective treatment of venous port-catheter thrombosis. Ann Surg Oncol 22(5):1593–1597. CrossRefPubMedGoogle Scholar
  5. 5.
    Toril Rubio M, Rodríguez BMA (2017) Revisión sistemática de las complicaciones de los dispositivos de administración de tratamiento al paciente oncológico. Enferm Glob 16(46):544–561. CrossRefGoogle Scholar
  6. 6.
    Baskin JL, Pui CH, Reiss U, Wilimas JA, Metzger ML, Ribeiro RC, Howard SC (2009) Management of occlusion and thrombosis associated with long-term indwelling central venous catheters. Lancet 374:159–169. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tolar B, Gould JR (1996) The timing and sequence of multiple device-related complications in patients with long-term indwelling catheters. Cancer 78:1308–1313.<1308::AID-CNCR20>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  8. 8.
    Moll S, Kenyon P, Bertoli L, de Maio J, Homesley H, Deitcher SR (2006) Phase II trial of alfimeprase, a novel-acting fibrin degradation agent, for occluded central venous access devices. J Clin Oncol 24(19):3056–3060. CrossRefPubMedGoogle Scholar
  9. 9.
    Verhamme P, Goossens G, Maleux G, Collen D, Stas M (2007) A dose-finding clinical trial of staphylokinase SY162 in patients with long-term venous access catheter thrombotic occlusion. J Thromb Thrombolysis 24(1):1–5. CrossRefPubMedGoogle Scholar
  10. 10.
    van Miert C, Hill R, Jones L (2012) Interventions for restoring patency of occluded central venous catheter lumens. Cochrane Database of Syst Rev 4:CD007119. CrossRefGoogle Scholar
  11. 11.
    Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Costa ACC, Ribeiro JM, Vasques CI et al (2017) Interventions for treatment of thrombotic occlusion in long-term central venous catheters: a systematic review. PROSPERO CRD42017074256.
  13. 13.
    Higgins JP, Altman DG, Gotzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomized trials. BMJ 343:d5928. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 73:712–716. CrossRefPubMedGoogle Scholar
  15. 15.
    Higgins J, Green S (2011) Cochrane handbook for systematic reviews of interventions Version 5.1.0. The Cochrane Collaboration, 2011. URL
  16. 16.
    Schünemann H, Brożek J, Guyatt G (2013) GRADE handbook for grading quality of evidence and strength of recommendations: the GRADE Working Group. URL
  17. 17.
    Bjeletich J (1987) Declotting central venous catheters with urokinase in the home by nurse clinicians. NITA 10(6):428–430PubMedGoogle Scholar
  18. 18.
    Gabrail N, Sandler E, Charu V, Anas N, Lim E, Blaney M, Ashby M, Gillespie BS, Begelman SM (2010) TROPICS1: a phase III, randomized, double-blind, placebo-controlled study of tenecteplase for restoration of function in dysfunctional central venous catheters. JVIR 21(12):1852–1858 CrossRefGoogle Scholar
  19. 19.
    Haire WD, Lieberman RP, Lund GB, Edney J, Wieczorek BM (1990) Obstructed central venous catheters: restoring function with a 12-hour infusion of a low-dose urokinase. Cancer 66(11):2279–2285.<2279::AID-CNCR2820661105>3.0.CO;2-O CrossRefPubMedGoogle Scholar
  20. 20.
    Haire WD, Lieberman RP (1992) Thrombosed central venous catheters: restoring function with 6-hour urokinase infusion after failure of bolus urokinase. JPEN 16(2):129–132. CrossRefGoogle Scholar
  21. 21.
    Haire WD, Atkinson JB, Stephens LC, Kotulak GD (1994) Urokinase versus recombinant tissue plasminogen activator in thrombosed central venous catheters: a double-blinded, randomized trial. Thromb Haemost 72(4):543–547CrossRefGoogle Scholar
  22. 22.
    Haire WD, Deitcher SR, Mullane KM, Jaff MR, Firszt CM, Schulz GA, Schuerr DM, Schwartz LB, Mouginis TL, Barton RP (2004) Recombinant urokinase for restoration of patency in occluded central venous access devices: a double-blind, placebo-controlled trial. Thromb Haemost 92(3):575–582. CrossRefPubMedGoogle Scholar
  23. 23.
    Horne MK III, Mayo DJ (1997) Low-dose urokinase infusions to treat fibrinous obstruction of venous access devices in cancer patients. J Clin Oncol 15(7):2709–2714. CrossRefPubMedGoogle Scholar
  24. 24.
    Liu CY, Jain V, Shields AF, Heilbrun LK (2004) Efficacy and safety of reteplase for central venous catheter occlusion in patients with cancer. JVIR 15:39–44. CrossRefPubMedGoogle Scholar
  25. 25.
    Tebbi C, Costanzi J, Shulman R, Dreisbach L, Jacobs BR, Blaney M, Ashby M, Gillespie BS, Begelman SM (2011) A phase III, open-label, single-arm study of tenecteplase for restoration of function in dysfunctional central venous catheters. JVIR 22(8):1117–1123. CrossRefPubMedGoogle Scholar
  26. 26.
    Whigham CJ, Greenbaum MC, Fisher RG, Goodman CJ, Thornby JI, Thomas JW (1999) Incidence and management of catheter occlusion in implantable arm ports: results in 391 patients. JVIR 10:767–774. CrossRefPubMedGoogle Scholar
  27. 27.
    Whigham CJ, Lindsey JI, Goodman CJ, Fisher RG (2002) Venous port salvage utilizing low dose tPA. Cardiovasc Intervent Radiol 25(6):513–516. CrossRefPubMedGoogle Scholar
  28. 28.
    Son JT, Min SY, Kim JI, Choi PW, Heo TG, Lee MS, Kim CN, Kim HY, Yi SY, Lee HR, Roh YN (2014) Thrombolytic therapy using urokinase for management of central venous catheter thrombosis. Vasc Spec Int 30(4):144–150. CrossRefGoogle Scholar
  29. 29.
    Deitcher SR, Fraschini G, Himmelfarb J, Schuman E, Smith TJ, Schulz GA, Firszt CM, Mouginis TL (2004) Dose-ranging trial with a recombinant urokinase (urokinase alfa) for occluded central venous catheters in oncology patients. JVIR 15(6):575–579. CrossRefPubMedGoogle Scholar
  30. 30.
    Ponec D, Irwin D, Haire WD, Hill PA, Li X, McCluskey E, COOL Investigators (2001) Recombinant tissue plasminogen activator (alteplase) for restoration of flow in occluded central venous access devices: a double-blind placebo-controlled trial – the cardiovascular thrombolytic to open occluded lines (COOL) efficacy trial. JVIR 12(8):951–955. CrossRefPubMedGoogle Scholar
  31. 31.
    Haire WD (2001) Techniques in dosing for thrombolysis of occluded central venous catheters. Tech Vasc Interv Radiol 4(2):127–130. CrossRefPubMedGoogle Scholar
  32. 32.
    Ernst FR, Chen E, Lipkin C, Tayama D, Amin AN (2014) Comparison of hospital length of stay, costs, and readmissions of alteplase versus catheter replacement among patients with occluded central venous catheter. J Hosp Med 9(8):490–496. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ana Cristina Carvalho da Costa
    • 1
    Email author
  • Jéssica Marques Ribeiro
    • 1
  • Christiane Inocêncio Vasques
    • 1
  • Graziela De Luca Canto
    • 2
  • André Luís Porporatti
    • 2
  • Paula Elaine Diniz dos Reis
    • 1
  1. 1.Interdisciplinary Research Laboratory Applied to Clinical Practice in OncologyUniversity of BrasíliaBrasíliaBrazil
  2. 2.Brazilian Center of Evidence-based ResearchFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations