Advertisement

Supportive Care in Cancer

, Volume 25, Issue 4, pp 1031–1034 | Cite as

Photobiomodulation therapy: management of mucosal necrosis of the oropharynx in previously treated head and neck cancer patients

  • Joel B. EpsteinEmail author
  • Paul Y. Song
  • Allen S. Ho
  • Babak Larian
  • Arash Asher
  • Rene-Jean Bensadoun
Commentary

Abstract

Necrosis of the oral mucosa following head and neck cancer radiation therapy presents considerable clinical management challenges. We report three cases of symptomatic persisting oral ulcerations where the addition of photobiomodulation therapy resulted in a rapid resolution of the oral lesions and in patient symptoms. These cases suggest that photobiomodulation may represent an adjunct to care of these difficult to manage complications in oncology.

Keywords

Photobiomoduation Low level laser therapy Mucosal wound healing Post-radiation mucosal necrosis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pereira AN, Eduardo C d P, Matson E, Marques MM (2002) Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 31:263–267CrossRefGoogle Scholar
  2. 2.
    Merli LA d S, dos Santos MTBR, Genovese WJ, Faloppa F (2005) Effect of low-intensity laser irradiation on the process of bone repair. Photomed Laser Surg 23:212–215CrossRefGoogle Scholar
  3. 3.
    Saygun I, Nizam N, Ural A, Serdar MA, Avcu F, Tozum TF (2013) Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-1 (IGF-1), and receptor of IGF-1 (IDFBP3) from osteoblasts. Photomed Laser Surg 30:149–154CrossRefGoogle Scholar
  4. 4.
    Nissan J, Assif D, Gross ME, Yaffe A, Binderman I (2006) Effect of low intensity laser irradiation on surgically created bony defects in rats. J Oral Rehabil 33:619024CrossRefGoogle Scholar
  5. 5.
    Zecha JA, Raber-Durlacher JE, Nair RG, Epstein JB, Sonis ST, Elad S, Hamblin MR, Barasch A, Migliorati CA, Milstein DM, Genot MT, Lansaat L, van der Brink R, Arnabat-Dominguez J, van der Molen L, Jacobi I, van Diessen J, de Lange J, Smeele LE, Schubert MM, Bensadoun RT (2016) Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: Part 1: mechanisms of action, dosimetric, and safety considerations. Support Care CancerGoogle Scholar
  6. 6.
    Zecha JA, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, Barasch A, Migliorati CA, Milstein DM, Genot MT, Lansaat L, van der Brink R, Arnabat-Dominguez J, van der Molen L, Jacobi I, van Diessen J, de Lange J, Smeele LE, Schubert MM, Bensadoun RT (2016) Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: Part 2: proposed applications and treatment protocols. Support Care CancerGoogle Scholar
  7. 7.
    Epstein JB, Raber-Durlacher JE, Lill M, Linhares YPL, Chang J, Barasch A, Slief RIC, Gueke M, Zecha JAM, Milstein DMJ, Tzachinis D (2016) Photobiomodulation therapy in the management of chronic oral graft-versus-host-disease. Support Care CancerGoogle Scholar
  8. 8.
    Romeo U, Galanakis A, Marias C et al (2011) Observation of pain control in patients with bisphosphonate-induced osteonecrosis using low level laser therapy: preliminary results. Photomed Laser Surg 29:447–452CrossRefGoogle Scholar
  9. 9.
    Vescovi P, Merigo E, Manfredi M et al (2008) Nd:YAG laser biostimulation in the treatment of bisphosphonate-associated osteonecrosis of the jaw: clinical experience in 28 cases. Photomed Laser Surg 26:37–46CrossRefGoogle Scholar
  10. 10.
    Loumanen M, Alaluusua S (2012) Treatment of bisphosphonate-induced osteonecrosis of the jaws with Nd:YAG laser biostimulation. Lasers Med Sci 27:251–255CrossRefGoogle Scholar
  11. 11.
    Da Guarda MG, Paraguassu GM, Cerqueira NS, Cury PR, Farias JG et al (2013) Laser GaAIAs (860 nm) photobiomodulation for the treatment of bisphosphonate-induced osteonecrosis of the jaw. Photomed Laser Surg 30:293–297CrossRefGoogle Scholar
  12. 12.
    Manfredi M, Merigo E, Guidotti R, Meleti M, Vescovi P (2011) Bisphosphonate-related osteonecrosis of the jaws: a case series of 25 patients affected by osteoporosis. Int J Oral Maxillofac Surg 40:277–284CrossRefGoogle Scholar
  13. 13.
    Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27(3):219–223CrossRefGoogle Scholar
  14. 14.
    Silfvast WT (2004) Laser Fundamentals, 2nd edn. Cambridge University Press, Cambridge, pp. 23–37CrossRefGoogle Scholar
  15. 15.
    Peplow PV, Chung T-Y, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28:S3–40CrossRefGoogle Scholar
  16. 16.
    Deigelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289CrossRefGoogle Scholar
  17. 17.
    Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy—an update. Dose-Response 9:602–608CrossRefGoogle Scholar
  18. 18.
    Chen CH, Hung HS, Hsu SH (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers in Surg Med 40:46–54CrossRefGoogle Scholar
  19. 19.
    Kimura H, Esumi H (2003) Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochemica Polonica 50:49–60Google Scholar
  20. 20.
    Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:1–16CrossRefGoogle Scholar
  21. 21.
    Mirsky N, Krispel Y, Shoshany Y, Maltz L, Oron U (2002) Promotion of angiogenesis by low energy laser irradiation. Antioxidant Redox Signal 4:785–790CrossRefGoogle Scholar
  22. 22.
    Danno K, Mori N, Toda KI, Kobayashi T, Utani A (2001) Near-infrared irradiation stimulates cutaneous wound repair: laboratory experiments on possible mechanisms. Photodermatol photoimmun photomed 17:261–265CrossRefGoogle Scholar
  23. 23.
    Stadler I, Lanzafame RJ, Evans R, Narayan V, Dailey B, Buehner N, Naim JO (2001) 830-nm irradiation increases the wound tensile strength in a diabetic murine model. Lasers Surg Med 28:220–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joel B. Epstein
    • 1
    Email author
  • Paul Y. Song
    • 1
  • Allen S. Ho
    • 1
  • Babak Larian
    • 2
  • Arash Asher
    • 3
    • 4
  • Rene-Jean Bensadoun
    • 5
  1. 1.Department of SurgerySamuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesUSA
  2. 2.Department of SurgeryDavid Geffen School of Medicine, Center for Advanced Head & Neck Surgery, University of California, Los AngelesBeverly HillsUSA
  3. 3.Cancer Survivorship and RehabilitationSamuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesUSA
  4. 4.Health Sciences, UCLALos AngelesUSA
  5. 5.Institut Nicois de Cancerolgie et d’Imagerie (INCI_ Centre de Haute Energie (CHE))NiceFrance

Personalised recommendations