Advertisement

Wiener klinische Wochenschrift

, Volume 131, Issue 13–14, pp 321–328 | Cite as

Real-world extravascular lung water index measurements in critically ill patients

Pulse index continuous cardiac output measurements: time course analysis and association with clinical characteristics
  • Matthias Werner
  • Bernhard Wernly
  • Michael Lichtenauer
  • Marcus Franz
  • Bjoern Kabisch
  • Johanna M Muessig
  • Maryna Masyuk
  • Paul Christian Schulze
  • Uta C. Hoppe
  • Malte Kelm
  • Alexander Lauten
  • Christian JungEmail author
original article
  • 44 Downloads

Summary

Background

Pulse index continuous cardiac output (PiCCO) is used for hemodynamic assessment. This study describes real world extravascular lung water index (EVLWI) measurements at three time points and relates them to other hemodynamic parameters and mortality in critically ill patients admitted to a medical intensive care unit (ICU).

Methods

A total of 198 patients admitted to a tertiary medical university hospital between February 2004 and December 2010 were included in this retrospective analysis. Patients were admitted for various diseases such as sepsis (n = 22), myocardial infarction (n = 53), pulmonary embolism (n = 3), cardiopulmonary resuscitation (n = 15), acute heart failure (AHF; n = 21) and pneumonia (n = 25).

Results

Patients included in this analysis were severely ill as represented by the high simplified acute physiology score 2 (SAPS2, 42 ± 18) and acute physiology and chronic health evaluation score 2 (APACHE2‚ 22 ± 9). Real-world values at three time points are provided. Intra-ICU mortality rates did not differ between the EVLWI > 7 vs. the ELVWI < 7 groups (15% vs. 13%; p = 0.82) and no association between hemodynamic measurements obtained by PiCCO with long-term mortality could be shown.

Conclusion

There were no associations of any PiCCO measurements with mortality most probably due to selection bias towards severely ill patients. Future prospective studies with predefined inclusion criteria and treatment algorithms are necessary to evaluate the value of PiCCO for prediction of mortality against simple clinical tools such as jugular venous pressure, edema and auscultation.

Keywords

PiCCO Critically ill, Risk stratification Intensive Care Unit Thermodilution EVLWI 

Abbreviations

CO

Cardiac output

CVP

Central venous pressure

EVLWI

Extravascular lung water index

GEDVI

Global end-diastolic volume index

ICU

Intensive care unit

ITBVI

Intrathoracic blood volume index

PAC

Pulmonary artery catheter

PICCO

Pulse index continuous cardiac output

SVRI

Systemic vascular resistance index

Notes

Acknowledgements

Special thanks to Katharina Bannier and Julian Gonschorrek for their support in collecting the patients’ follow-up data.

Compliance with ethical guidelines

Conflict of interest

M. Werner, B. Wernly, M. Lichtenauer, M. Franz, B. Kabisch, J. Muessig, M. Masyuk, P.C. Schulze, U.C. Hoppe, M. Kelm, A. Lauten, and C. Jung declare that they have no competing interests.

Ethical standards

The study was approved by the local ethics committee of University Hospital/the Medical Faculty of the University. The local ethics committee of University Hospital waived the need to obtain written informed consent to participate from the patients involved in this study as the data were collected retrospectively. Consent for publication was not needed as the local ethics committee of University Hospital excluded this study from individual consent to participate as data were collected retrospectively.

Supplementary material

508_2019_1501_MOESM1_ESM.pptx (39 kb)
Supplemental Fig. 1 Mortality rates between EVLWI > 7 ml/kg vs. ELVWI < 7 ml/kg (log-rank p = 0.93)

References

  1. 1.
    Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283(9):447–51.CrossRefGoogle Scholar
  2. 2.
    Kirton OC, Calabrese RC, Staff I. Increasing use of less-invasive hemodynamic monitoring in 3 specialty surgical intensive care units: A 5-year experience at a tertiary medical center. J Intensive Care Med. 2015;30(1):30–6.CrossRefGoogle Scholar
  3. 3.
    Wernly B, Lichtenauer M, Franz M, Fritzenwanger M, Kabisch B, Figulla HR, et al. Pulse contour cardiac output monitoring in acute heart failure patients: Assessment of hemodynamic measurements. Wien Klin Wochenschr. 2016;128(23/24):864–9.CrossRefGoogle Scholar
  4. 4.
    Gassanov N, Caglayan E, Nia A, Erdmann E, Er F. Hemodynamic monitoring in the intensive care unit: Pulmonary artery catheter versus PiCCO. Dtsch Med Wochenschr. 2011;136(8):376–80.CrossRefGoogle Scholar
  5. 5.
    Gassanov N, Caglayan E, Nia A, Erdmann E, Er F. The PiCCO catheter. Dtsch Med Wochenschr. 2010;135(46):2311–4.CrossRefGoogle Scholar
  6. 6.
    Oren-Grinberg A. The PiCCO monitor. Int Anesthesiol Clin. 2010;48(1):57–85.CrossRefGoogle Scholar
  7. 7.
    Litton E, Morgan M. The PiCCO monitor: A review. Anaesth Intensive Care. 2012;40(3):393–409.CrossRefGoogle Scholar
  8. 8.
    Cottis R, Magee N, Higgins DJ. Haemodynamic monitoring with pulse-induced contour cardiac output (PiCCO) in critical care. Intensive Crit Care Nurs. 2003;19(5):301–7.CrossRefGoogle Scholar
  9. 9.
    Monnet X, Teboul JL. Transpulmonary thermodilution: Advantages and limits. Crit Care. 2017;21(1):147.CrossRefGoogle Scholar
  10. 10.
    Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ. Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med. 1992;18(3):142–7.CrossRefGoogle Scholar
  11. 11.
    Lemson J, de Boode WP, Hopman JC, Singh SK, van der Hoeven JG. Validation of transpulmonary thermodilution cardiac output measurement in a pediatric animal model. Pediatr Crit Care Med. 2008;9(3):313–9.CrossRefGoogle Scholar
  12. 12.
    Sakka SG, Reuter DA, Perel A. The transpulmonary thermodilution technique. J Clin Monit Comput. 2012;26(5):347–53.CrossRefGoogle Scholar
  13. 13.
    Kuzkov VV, Kirov MY, Sovershaev MA, Kuklin VN, Suborov EV, Waerhaug K, et al. Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med. 2006;34(6):1647–53.CrossRefGoogle Scholar
  14. 14.
    Wang ZY, Bai Y. Extravascular lung water and pulmonary vascular permeability index may inadvertently delay the identification of acute respiratory distress syndrome. Crit Care. 2013;17(2):420.CrossRefGoogle Scholar
  15. 15.
    Wang H, Cui N, Su L, Long Y, Wang X, Zhou X, et al. Prognostic value of extravascular lung water and its potential role in guiding fluid therapy in septic shock after initial resuscitation. J Crit Care. 2016;33:106–13.CrossRefGoogle Scholar
  16. 16.
    Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472–80.CrossRefGoogle Scholar
  17. 17.
    Cotter G, Moshkovitz Y, Milovanov O, Salah A, Blatt A, Krakover R, et al. Acute heart failure: A novel approach to its pathogenesis and treatment. Eur J Heart Fail. 2002;4(3):227–34.CrossRefGoogle Scholar
  18. 18.
    Rabuel C, Mebazaa A. Septic shock: A heart story since the 1960s. Intensive Care Med. 2006;32(6):799–807.CrossRefGoogle Scholar
  19. 19.
    Young JD. The heart and circulation in severe sepsis. Br J Anaesth. 2004;93(1):114–20.CrossRefGoogle Scholar
  20. 20.
    Masyuk M, Wernly B, Lichtenauer M, Franz M, Kabisch B, Muessig JM, et al. Prognostic relevance of serum lactate kinetics in critically ill patients. Intensive Care Med. 2019;45(1):55–61.CrossRefGoogle Scholar
  21. 21.
    Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: A physiologically based classification system. Crit Care Med. 1981;9(8):591–7.CrossRefGoogle Scholar
  22. 22.
    Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63.CrossRefGoogle Scholar
  23. 23.
    Lee KS, Abbas AE, Khandheria BK, Lester SJ. Echocardiographic assessment of right heart hemodynamic parameters. J Am Soc Echocardiogr. 2007;20(6):773–82.CrossRefGoogle Scholar
  24. 24.
    Sivak ED, Richmond BJ, O’Donavan PB, Borkowski GP. Value of extravascular lung water measurement vs portable chest x‑ray in the management of pulmonary edema. Crit Care Med. 1983;11(7):498–501.CrossRefGoogle Scholar
  25. 25.
    Milne EN. Correlation of physiologic findings with chest roentgenology. Radiol Clin North Am. 1973;11(1):17–47.PubMedGoogle Scholar
  26. 26.
    Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345(8):574–81.CrossRefGoogle Scholar
  27. 27.
    Drazner MH, Rame JE, Dries DL. Third heart sound and elevated jugular venous pressure as markers of the subsequent development of heart failure in patients with asymptomatic left ventricular dysfunction. Am J Med. 2003;114(6):431–7.CrossRefGoogle Scholar
  28. 28.
    Lindqvist P, Calcutteea A, Henein M. Echocardiography in the assessment of right heart function. Eur J Echocardiogr. 2008;9(2):225–34.PubMedGoogle Scholar
  29. 29.
    Chaudhry SI, Wang Y, Concato J, Gill TM, Krumholz HM. Patterns of weight change preceding hospitalization for heart failure. Circulation. 2007;116(14):1549–54.CrossRefGoogle Scholar
  30. 30.
    Torgersen C, Schmittinger CA, Wagner S, Ulmer H, Takala J, Jakob SM, et al. Hemodynamic variables and mortality in cardiogenic shock: A retrospective cohort study. Crit Care. 2009;13(5):R157.CrossRefGoogle Scholar
  31. 31.
    Yang Y, Ma J, Zhao L. High central venous pressure is associated with acute kidney injury and mortality in patients underwent cardiopulmonary bypass surgery. J Crit Care. 2018;48:211–5.CrossRefGoogle Scholar
  32. 32.
    Lee EP, Hsia SH, Lin JJ, Chan OW, Lee J, Lin CY, et al. Hemodynamic analysis of pediatric septic shock and cardiogenic shock using transpulmonary thermodilution. Biomed Res Int. 2017;  https://doi.org/10.1155/2017/3613475.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tan C, Rubenson D, Srivastava A, Mohan R, Smith MR, Billick K, et al. Left ventricular outflow tract velocity time integral outperforms ejection fraction and Doppler-derived cardiac output for predicting outcomes in a select advanced heart failure cohort. Cardiovasc Ultrasound. 2017;15(1):18.CrossRefGoogle Scholar
  34. 34.
    Sekulic AD, Trpkovic SV, Pavlovic AP, Marinkovic OM, Ilic AN. Scoring systems in assessing survival of critically ill ICU patients. Med Sci Monit. 2015;21:2621–9.CrossRefGoogle Scholar
  35. 35.
    Houwink AP, Rijkenberg S, Bosman RJ, van der Voort PH. The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: A retrospective cohort analysis. Crit Care. 2016;20:56.CrossRefGoogle Scholar
  36. 36.
    Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units—Causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med. 1996;24(2):192–8.CrossRefGoogle Scholar
  37. 37.
    Cardoso FS, Marcelino P, Bagulho L, Karvellas CJ. Acute liver failure: An up-to-date approach. J Crit Care. 2017;39:25–30.CrossRefGoogle Scholar
  38. 38.
    Fincke R, Hochman JS, Lowe AM, Menon V, Slater JN, Webb JG, et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: A report from the SHOCK trial registry. J Am Coll Cardiol. 2004;44(2):340–8.CrossRefGoogle Scholar
  39. 39.
    Mutoh T, Kazumata K, Ajiki M, Ushikoshi S, Terasaka S. Goal-directed fluid management by bedside transpulmonary hemodynamic monitoring after subarachnoid hemorrhage. Stroke. 2007;38(12):3218–24.CrossRefGoogle Scholar
  40. 40.
    Ritter S, Rudiger A, Maggiorini M. Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: An observational study. Crit Care. 2009;13(4):R133.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Matthias Werner
    • 1
  • Bernhard Wernly
    • 2
  • Michael Lichtenauer
    • 2
  • Marcus Franz
    • 1
  • Bjoern Kabisch
    • 1
  • Johanna M Muessig
    • 3
  • Maryna Masyuk
    • 3
  • Paul Christian Schulze
    • 1
  • Uta C. Hoppe
    • 2
  • Malte Kelm
    • 3
  • Alexander Lauten
    • 4
    • 5
  • Christian Jung
    • 3
    Email author
  1. 1.Clinic of Internal Medicine I, Department of CardiologyJena University HospitalJenaGermany
  2. 2.Clinic of Internal Medicine II, Department of CardiologyParacelsus Medical University of SalzburgSalzburgAustria
  3. 3.Division of Cardiology, Pulmonology, and Vascular Medicine, Medical FacultyUniversity DuesseldorfDuesseldorfGermany
  4. 4.Department of CardiologyCharité—Universitätsmedizin BerlinBerlinGermany
  5. 5.Standort BerlinDeutsches Zentrum für Herz-Kreislauf-Forschung (DZHK)BerlinGermany

Personalised recommendations