Advertisement

Insulinpumpentherapie bei Kindern, Jugendlichen und Erwachsenen (Update 2019)

  • Ingrid Schütz-FuhrmannEmail author
  • Marietta Stadler
  • Sandra Zlamal-Fortunat
  • Birgit Rami-Merhar
  • Elke Fröhlich-Reiterer
  • Sabine E. Hofer
  • Julia Mader
  • Michael Resl
  • Martin Bischof
  • Alexandra Kautzky-Willer
  • Raimund Weitgasser
leitlinien für die praxis

Zusammenfassung

Dieses Positionspapier zur Anwendung der subkutanen Insulinpumpentherapie (CSII) bei Diabetes mellitus basiert auf aktueller Evidenz zu Sicherheit und Vor-und Nachteile der CSII, insbesondere im Hinblick auf glykämische Kontrolle, Hypoglykämie, ketoazidotische Entgleisung, Lebensqualität und Anwendung in der Schwangerschaft. Dieser Artikel beinhaltet die Empfehlungen der Österreichischen Diabetes Gesellschaft für die klinische Anwendung der Insulinpumpentherapie bei Kindern, Jugendlichen und Erwachsenen.

Schlüsselwörter

Insulinpumpentherapie Leitlinie Diabetes mellitus Kinder und Jugendliche mit Diabetes 

Insulin pump therapy in children, adolescents and adults, guidelines (Update 2019)

Summary

This position statement is based on current evidence available on the safety and benefits of continuous subcutaneous insulin infusion therapy (CSII, pump therapy) in diabetes with an emphasis on the effects of CSII on glycemic control, hypoglycaemia rates, occurrence of ketoacidosis, quality of life and the use of insulin pump therapy in pregnancy. The current article represents the recommendations of the Austrian Diabetes Association for the clinical praxis of insulin pump treatment in children, adolescents and adults.

Keywords

Insulin pump therapy Guidelines diabetes mellitus Children and adolescents with diabetes 

Notes

Interessenkonflikt

S. Zlamal-Fortunat hat in den letzten 36 Monaten von folgenden Firmen Honorare/Forschungsgelder erhalten: Amgen, AstraZeneca, Novartis, Novo Nordisk, Eli Lilly, Boehringer Ingelheim, MSD, Servier, Sanofi, Hipp. I. Schütz-Fuhrmann hat in den letzten 36 Monaten von folgenden Firmen Honorare erhalten: Medtronic, Roche, Dexcom, Ypsomed, Eli Lilly, Novo Nordisk, sanofi-aventis, Abbott. B. Rami-Merhar hat in den letzten 36 Monaten von folgenden Firmen Honorare/Forschungsgelder erhalten: Eli Lilly, Medtronic, sanofi-aventis, Roche, Menarini, Boehringer Ingelheim. E. Fröhlich-Reiterer hat in den letzten 36 Monaten von folgenden Firmen Honorare/Forschungsgelder erhalten: Eli Lilly, Medtronic, Novo Nordisk, Roche. S.E. Hofer hat in den letzten 36 Monaten von folgenden Unternehmen, die auch fördernde Mitglieder der ÖDG sind, Forschungsunterstützungen und/oder Honorare erhalten: Sanofi, Eli Lilly. J. Mader hat in den letzten 36 Monaten Honorare von folgenden Firmen erhalten: Novo Nordisk, sanofi-aventis, Nintamed, Eli Lilly, Takeda, Merck Sharp & Dohme, AstraZeneca, Boehringer Ingelheim, Medtronic Minimed, Roche Diabetes Care. Forschungsgelder: A. Menarini Diagnostics, BBraun, Metronom Health, Novo Nordisk, Roche Diabetes Care, sanofi-aventis. M. Resl hat Vortragshonorare und Honorare für Beratungstätigkeit von folgenden Firmen erhalten: Boehringer Ingelheim, sanofi-aventis, Novo Nordisk, Dexcom. A. Kautzky-Willer Kautzky-Willer hat von folgenden Unternehmen, die auch fördernde Mitglieder der ÖDG sind, Forschungsunterstützungen und/oder Honorare erhalten: AstraZeneca, Amgen, Boehringer Ingelheim, El Lilly, Merck Sharp & Dohme, Novartis, Novo Nordisk, Roche, sanofi-aventis, Servier, Takeda. und R. Weitgasser Weitgasser hat von folgenden Unternehmen, die teils auch fördernde Mitglieder der ÖDG sind, Forschungsunterstützungen und/oder Honorare erhalten: Abbott, Allergan, AstraZeneca, Boehringer Ingelheim, Dexcom, Eli Lilly, Merck Sharp & Dohme, Novo Nordisk, Roche, sanofi-aventis, Servier, Takeda. M. Stadler und M. Bischof geben an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Diabetes Epidemiology Research International Mortality Study Group.. International evaluation of cause-specific mortality and IDDM. Diabetes Care. 1991;14(1):55–60.CrossRefGoogle Scholar
  2. 2.
    Pickup J, Mattock M, Kerry S. Glycaemic control with continuous subcutaneous insulin infusion compared with intensive insulin injections in patients with type 1 diabetes: meta-analysis of randomised controlled trials. BMJ. 2002;324(7339):70.CrossRefGoogle Scholar
  3. 3.
    Jeitler K, Horvath K, Berghold A, Gratzer TW, Neeser K, Pieber TR, et al. Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetologia. 2008;51(6):941–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Misso ML, Egberts KJ, Page M, O’Connor D, Shaw J. Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus. Cochrane Database Syst Rev. 2010;  https://doi.org/10.1002/14651858.CD005103.pub2.PubMedCrossRefGoogle Scholar
  5. 5.
    Retnakaran R, Hochman J, Devries JH, Hanaire-Broutin H, Heine RJ, Melki V, et al. Continuous subcutaneous insulin infusion versus multiple daily injections: the impact of baseline A1c. Diabetes Care. 2004;27(11):2590–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Hirsch IB, Bode BW, Garg S, Lane WS, Sussman A, Hu P, et al. Continuous subcutaneous insulin infusion (CSII) of insulin aspart versus multiple daily injection of insulin aspart/insulin glargine in type 1 diabetic patients previously treated with CSII. Diabetes Care. 2005;28(3):533.PubMedCrossRefGoogle Scholar
  7. 7.
    Sherr J, Tamborlane WV. Past, present, and future of insulin pump therapy: better shot at diabetes control. Mt Sinai J Med. 2008;75(4):352–61.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Pankowska E, Blazik M, Dziechciarz P, Szypowska A, Szajewska H. Continuous subcutaneous insulin infusion vs. multiple daily injections in children with type 1 diabetes: a systematic review and meta-analysis of randomized control trials. Pediatr Diabetes. 2009;10(1):52–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Bohn B, Karges B, Vogel C, Otto KP, Marg W, Hofer SE, Fröhlich-Reiterer E, Holder M, Plamper M, Wabitsch M, Kerner W, Holl RW, DPV Initiative. 20 years of pediatric benchmarking in Germany and Austria: age-dependent analysis of longitudinal follow-up in 63,967 children and adolescents with type 1 diabetes. 1. PLoS ONE. 2016;11(8):e160971–2016.  https://doi.org/10.1371/journal.pone.0160971.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sherr JL, Hermann JM, Campbell F, Foster NC, Hofer SE, Allgrove J, Maahs DM, Kapellen TM, Holman N, Tamborlane WV, Holl RW, Beck RW, Warner JT, T1D Exchange Clinic Network, DPV Initiative, National Paediatric Diabetes Audit and the Royal College of Paediatrics and Child Health registries. Use of insulin pump therapy in children and adolescents with type 1 diabetes and its impact on metabolic control: comparison of results from three large, transatlantic paediatric registries. Diabetologia. 2016;59(1):87–91.  https://doi.org/10.1007/s00125-015-3790-6.PubMedCrossRefGoogle Scholar
  11. 11.
    Maahs DM, Hermann JM, DuBose SN, Miller KM, Heidtmann B, DiMeglio LA, Rami-Merhar B, Beck RW, Schober E, Tamborlane WV, Kapellen TM, Holl RW, T1D Exchange Clinic Network. Contrasting the clinical care and outcomes of 2,622 children with type 1 diabetes less than 6 years of age in the United States T1D Exchange and German/Austrian DPV registries. Diabetologia. 2014;57(8):1578–85.  https://doi.org/10.1007/s00125-014-3272-2.PubMedCrossRefGoogle Scholar
  12. 12.
    Karges B, Schwandt A, Heidtmann B, Kordonouri O, Binder E, Schierloh U, Boettcher C, Kapellen TH, Holl RW. Association of insulin pump therapy vs insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and young adults with type 1 diabetes. JAMA. 2017;318(14):1358–66.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zabeen B, Craig ME, Virk SA, Pryke A, Chan AK, Cho YH, Benitez-Aguirre PZ, Hing S, Donaghue KC. Insulin pump therapy is associated with lower rates of retinopathy and peripheral nerve abnormality. PLoS ONE. 2016;11(4):e153033.  https://doi.org/10.1371/journal.pone.0153033.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bachran R, Beyer P, Klinkert C, Heidtmann B, Rosenbauer J, Holl RW. Basal rates and circadian profiles in continuous subcutaneous insulin infusion (CSII) differ for preschool children, prepubertal children, adolescents and young adults. Pediatr Diabetes. 2012;13(1):1–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Adolfsson P, Ziegler R, Hanas R. Continuous subcutaneous insulin infusion: special needs for children. Pediatr Diabetes. 2017;18(4):255–61.  https://doi.org/10.1111/pedi.12491.PubMedCrossRefGoogle Scholar
  16. 16.
    Reznik Y, Cohen O, Aronson R, Conget I, Runzis S, Castaneda J, et al. Insulin pump treatment compared with multiple daily injections for treatment of type 2 diabetes (OpT2mise): a randomised open-label controlled trial. Lancet. 2014;384(9950):1265–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Pickup JC, Reznik Y, Sutton AJ. Glycemic control during continuous subcutaneous insulin infusion versus multiple daily insulin injections in type 2 diabetes: individual patient data Meta-analysis and Meta-regression of randomized controlled trials. Diabetes Care. 2017;40(5):715–22.  https://doi.org/10.2337/dc16-2201.PubMedCrossRefGoogle Scholar
  18. 18.
    Pickup JC, Sutton AJ. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med. 2008;25(7):765–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Berghaeuser MA, Kapellen T, Heidtmann B, Haberland H, Klinkert C, Holl RW. Continuous subcutaneous insulin infusion in toddlers starting at diagnosis of type 1 diabetes mellitus. A multicenter analysis of 104 patients from 63 centres in Germany and Austria. Pediatr Diabetes. 2008;9(6):590–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Bergenstal RM, Tamborlane WV, Ahmann A, Buse JB, Dailey G, Davis SN, et al. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med. 2010;363(4):311–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Bergenstal RM, Tamborlane WV, Ahmann A, Buse JB, Dailey G, Davis SN, et al. Sensor-augmented pump therapy for A1C reduction (STAR 3) study: results from the 6‑month continuation phase. Diabetes Care. 2011;34(11):2403–5.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Slover RH, Welsh JB, Criego A, Weinzimer SA, Willi SM, Wood MA, et al. Effectiveness of sensor-augmented pump therapy in children and adolescents with type 1 diabetes in the STAR 3 study. Pediatr Diabetes. 2012;13(1):6–1120.PubMedCrossRefGoogle Scholar
  23. 23.
    Hermanides J, Norgaard K, Bruttomesso D, Mathieu C, Frid A, Dayan CM, et al. Sensor-augmented pump therapy lowers HbA(1c) in suboptimally controlled Type 1 diabetes; a randomized controlled trial. Diabet Med. 2011;28(10):1158–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Battelino T, Nimri R, Dovc K, Phillip M, Bratina N. Prevention of hypoglycemia with predictive low glucose insulin suspension in children with type 1 diabetes: a randomized controlled trial. Diabetes Care. 2017;40(6):764–70.  https://doi.org/10.2337/dc16-2584.PubMedCrossRefGoogle Scholar
  25. 25.
    Kordonouri O, Pankowska E, Rami B, Kapellen T, Coutant R, Hartmann R, et al. Sensor-augmented pump therapy from the diagnosis of childhood type 1 diabetes: results of the Paediatric Onset Study (ONSET) after 12 months of treatment. Diabetologia. 2010;53(12):2487–95.PubMedCrossRefGoogle Scholar
  26. 26.
    Danne T, Battelino T, Jarosz-Chobot P, Kordonouri O, Pankowska E, Ludvigsson J, et al. Establishing glycaemic control with continuous subcutaneous insulin infusion in children and adolescents with type 1 diabetes: experience of the PedPump Study in 17 countries. Diabetologia. 2008;51(9):1594–601.PubMedCrossRefGoogle Scholar
  27. 27.
    Bergenstal RM, Welsh JB, Shin JJ. Threshold insulin-pump interruption to reduce hypoglycemia. N Engl J Med. 2013;369(15):1474.PubMedCrossRefGoogle Scholar
  28. 28.
    Ly TT, Nicholas JA, Retterath A, Lim EM, Davis EA, Jones TW. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA. 2013;310(12):1240–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Choudhary P, Ramasamy S, Green L, Gallen G, Pender S, Brackenridge A, et al. Real-time continuous glucose monitoring significantly reduces severe hypoglycemia in hypoglycemia-unaware patients with type 1 diabetes. Diabetes Care. 2013;36(12):4160–2.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Danne T, Tsioli C, Kordonouri O, Blaesig S, Remus K, Roy A, et al. The PILGRIM study: in silico modeling of a predictive low glucose management system and feasibility in youth with type 1 diabetes during exercise. Diabetes Technol Ther. 2014;16(6):338–47.PubMedCrossRefGoogle Scholar
  31. 31.
    Biester T, Kordonouri O, Holder M, Remus K, Kieninger-Baum D, Wadien T, Danne T. Let the algorithm do the work: reduction of hypoglycemia using sensor-augmented pump therapy with predictive insulin suspension (smartguard) in pediatric type 1 diabetes patients. Diabetes Technol Ther. 2017;19(3):173–82.  https://doi.org/10.1089/dia.2016.0349.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Sherr JL, Tauschmann M, Battelino T, de Bock M, Forlenza G, Roman R, Hood KK, Maahs DM. ISPAD clinical practice consensus guidelines 2018 diabetes technologies. Pediatr Diabetes. 2018;  https://doi.org/10.1111/pedi.12731.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Attia N, Jones TW, Holcombe J, Tamborlane WV. Comparison of human regular and lispro insulins after interruption of continuous subcutaneous insulin infusion and in the treatment of acutely decompensated IDDM. Diabetes Care. 1998;21(5):817–21.PubMedCrossRefGoogle Scholar
  34. 34.
    Knight G, Jennings AM, Boulton AJ, Tomlinson S, Ward JD. Severe hyperkalaemia and ketoacidosis during routine treatment with an insulin pump. Br Med J. 1985;291(6492):371–2.CrossRefGoogle Scholar
  35. 35.
    Mecklenburg RS, Guinn TS. Complications of insulin pump therapy: the effect of insulin preparation. Diabetes Care. 1985;8(4):367–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Realsen J, Goettle H, Chase HP. Morbidity and mortality of diabetic ketoacidosis with and without insulin pump care. Diabetes Technol Ther. 2012;14(12):1149–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Farrar D, Tuffnell DJ, West J. Continuous subcutaneous insulin infusion versus multiple daily injections of insulin for pregnant women with diabetes. Cochrane Database Syst Rev. 2007;  https://doi.org/10.1002/14651858.CD005542.pub3.PubMedCrossRefGoogle Scholar
  38. 38.
    Mukhopadhyay A, Farrell T, Fraser RB, Ola B. Continuous subcutaneous insulin infusion vs intensive conventional insulin therapy in pregnant diabetic women: a systematic review and metaanalysis of randomized, controlled trials. Am J Obstet Gynecol. 2007;197(5):447–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Kernaghan D, Farrell T, Hammond P, Owen P. Fetal growth in women managed with insulin pump therapy compared to conventional insulin. Eur J Obstet Gynecol Reprod Biol. 2008;137(1):47–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Kallas-Koeman MM, Kong JM, Klinke JA, Butalia S, Lodha AK, Lim KI, et al. Insulin pump use in pregnancy is associated with lower HbA1c without increasing the rate of severe hypoglycaemia or diabetic ketoacidosis in women with type 1 diabetes. Diabetologia. 2014;57(4):681–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Gabbe SG, Holing E, Temple P, Brown ZA. Benefits, risks, costs, and patient satisfaction associated with insulin pump therapy for the pregnancy complicated by type 1 diabetes mellitus. Am J Obstet Gynecol. 2000;182(6):1283–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Steineck I, Cederholm J, Eliasson B, Rawshani A, Eeg-Olofsson K, Svensson AM, Zethelius B, Avdic T, Landin-Olsson M, Jendle J, Gudbjörnsdóttir S, Swedish National Diabetes Register. Insulin pump therapy, multiple daily injections, and cardiovascular mortality in 18,168 people with type 1 diabetes: observational study. BMJ. 2015;350:h3234.  https://doi.org/10.1136/bmj.h3234.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Klupa T, Benbenek-Klupa T, Malecki M, Szalecki M, Sieradzki J. Clinical usefulness of a bolus calculator in maintaining normoglycaemia in active professional patients with type 1 diabetes treated with continuous subcutaneous insulin infusion. J Int Med Res. 2008;36(5):1112–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Jones SM, Quarry JL, Caldwell-McMillan M, Mauger DT, Gabbay RA. Optimal insulin pump dosing and postprandial glycemia following a pizza meal using the continuous glucose monitoring system. Diabetes Technol Ther. 2005;7(2):233–40.PubMedCrossRefGoogle Scholar
  45. 45.
    O’Connell MA, Gilbertson HR, Donath SM, Cameron FJ. Optimizing postprandial glycemia in pediatric patients with type 1 diabetes using insulin pump therapy: impact of glycemic index and prandial bolus type. Diabetes Care. 2008;31(8):1491–5.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Pozzilli P, Battelino T, Danne T, Hovorka R, Jarosz-Chobot P, Renard E. Continuous subcutaneous insulin infusion in diabetes: patient populations, safety, efficacy, and pharmacoeconomics. Diabetes Metab Res Rev. 2016;32(1):21–39.PubMedCrossRefGoogle Scholar
  47. 47.
    Cummins E, Royle P, Snaith A, Greene A, Robertson L, McIntyre L, et al. Clinical effectiveness and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes: systematic review and economic evaluation. Health Technol Assess. 2010;14(11):iii–iv, xi–xvi, 1–181.PubMedCrossRefGoogle Scholar
  48. 48.
    Golden SH, Brown T, Yeh HC, Maruthur N, Ranasinghe P, Berger Z, et al. Methods for insulin delivery and glucose monitoring: comparative effectiveness. Report No.: 12-EHC036-EF. Rockville: Agency for Healthcare Research and Quality; 2012.Google Scholar
  49. 49.
    Cherubini V, Gesuita R, Bonfanti R, Franzese A, Frongia AP, Iafusco D, et al. Health-related quality of life and treatment preferences in adolescents with type 1 diabetes. The VIPKIDS study. Acta Diabetol. 2014;51(1):43–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Skogsberg L, Fors H, Hanas R, Chaplin JE, Lindman E, Skogsberg J. Improved treatment satisfaction but no difference in metabolic control when using continuous subcutaneous insulin infusion vs. multiple daily injections in children at onset of type 1 diabetes mellitus. Pediatr Diabetes. 2008;9(5):472–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Lukacs A, Kiss-Toth E, Varga B, Soos A, Takac P, Barkai L. Benefits of continuous subcutaneous insulin infusion on quality of life. Int J Technol Assess Health Care. 2013;29(1):48–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Ingrid Schütz-Fuhrmann
    • 1
    Email author
  • Marietta Stadler
    • 2
  • Sandra Zlamal-Fortunat
    • 3
  • Birgit Rami-Merhar
    • 4
  • Elke Fröhlich-Reiterer
    • 5
  • Sabine E. Hofer
    • 6
  • Julia Mader
    • 7
  • Michael Resl
    • 8
  • Martin Bischof
    • 9
  • Alexandra Kautzky-Willer
    • 10
  • Raimund Weitgasser
    • 11
    • 12
  1. 1.3. Medizinische Abteilung mit Stoffwechselerkrankungen und NephrologieKrankenhaus HietzingWienÖsterreich
  2. 2.Diabetes Research GroupKing’s College LondonLondonGroßbritannien
  3. 3.Abteilung für Innere Medizin und GastroenterologieKlinikum KlagenfurtKlagenfurt am WörtherseeÖsterreich
  4. 4.Universitätsklinik für Kinder- und JugendheilkundeMedizinische Universität WienWienÖsterreich
  5. 5.Universitätsklinik für Kinder- und JugendheilkundeMedizinische Universität GrazGrazÖsterreich
  6. 6.Department für Pädiatrie 1Medizinische Universität InnsbruckInnsbruckÖsterreich
  7. 7.Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere MedizinMedizinische Universität GrazGrazÖsterreich
  8. 8.Abteilung für Innere Medizin IKonventhospital der Barmherzigen Brüder LinzLinzÖsterreich
  9. 9.Ordensklinikum Linz ElisabethinenLinzÖsterreich
  10. 10.Gender Medicine Unit, Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin IIIMedizinische Universität WienWienÖsterreich
  11. 11.Abteilung für Innere MedizinPrivatklinik Wehrle-DiakonissenSalzburgÖsterreich
  12. 12.Universitätsklinik für Innere Medizin ILKH Salzburg – Universitätsklinikum der Paracelsus Medizinischen PrivatuniversitätSalzburgÖsterreich

Personalised recommendations