Advertisement

Diabetes mellitus – Definition, Klassifikation, Diagnose, Screening und Prävention (Update 2019)

  • Jürgen Harreiter
  • Michael RodenEmail author
leitlinien für die praxis
  • 44 Downloads

Zusammenfassung

Diabetes mellitus bezeichnet eine Gruppe von heterogenen Erkrankungen, deren gemeinsamer Befund die Erhöhung der Blutglukosekonzentration ist. Die gegenwärtige Klassifikation des Diabetes mellitus wird dargestellt, und die wesentlichen Merkmale von Typ-1- und Typ-2-Diabetes werden gegenübergestellt. Darüber hinaus werden die Kriterien für die korrekte biochemische Diagnose unter Nüchternbedingungen und im oralen Glukosetoleranztest sowie die Anwendung des Hämoglobin A1c (HbA1c) zusammengefasst. Die zunehmende Prävalenz des Diabetes erfordert zudem gezieltes Screening zur Erkennung von Diabetes und Prädiabetes in Risikogruppen. Dies bildete die Grundlage für die frühzeitige Einleitung von Maßnahmen zur Prävention der Manifestation des Diabetes in diesen Risikogruppen und Verzögerung der Diabetesprogression.

Schlüsselwörter

Hyperglykämie Glukoseintoleranz Abnorme Nüchternglukose Prädiabetes Adipositas 

Diabetes mellitus—Definition, classification, diagnosis, screening and prevention (Update 2019)

Summary

Diabetes mellitus comprises a group of heterogeneous disorders, which have an increase in blood glucose concentrations in common. The current classification for diabetes mellitus is presented and the main features of type 1 and type 2 diabetes are compared. Furthermore, the criteria for the correct biochemical diagnosis during fasting and oral glucose tolerance tests as well as the use of hemoglobin A1c (HbA1c) are summarized. The increasing prevalence of diabetes requires targeted screening for detecting diabetes and prediabetes in risk groups. This forms the basis for the early initiation of measures to prevent the onset of diabetes in these risk groups and to delay the progression of diabetes.

Keywords

Hyperglycemia Glucose intolerance Impaired fasting glucose Prediabetes Obesity 

Notes

Interessenkonflikt

J. Harreiter hat von folgenden Unternehmen Forschungsunterstützungen und/oder Honorare erhalten: AstraZeneca, Novo Nordisk, Takeda. M. Roden hat von folgenden Unternehmen Forschungsunterstützungen und/oder Honorare erhalten: AstraZeneca, Boehringer-Ingelheim, Eli Lilly, Genentech, Merck, Novartis, Novo Nordisk, Nutricia/Danone, Poxel, Sanofi-Aventis.

Literatur

  1. 1.
    International Diabetes Federation. IDF diabetes atlas 8th edition. 2017. https://www.idf.org/e-library/epidemiology-research/diabetes-atlas.html.. Zugegriffen: 25. Apr. 2018.Google Scholar
  2. 2.
    Schmutterer I, Delcour J, Griebler R, Hrsg. Österreichischer Diabetesbericht 2017. Wien: Bundesministerium für Gesundheit und Frauen; 2017.Google Scholar
  3. 3.
    Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: Systematic review and meta-analysis. BMJ. 2016;i5953:355.Google Scholar
  4. 4.
    The American Diabetes Association (ADA). 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes–2018. Diabetes Care. 2018;41(Suppl 1):S13–S27.  https://doi.org/10.2337/dc18-S002.CrossRefGoogle Scholar
  5. 5.
    Müller-Wieland D, Nauck M, Heinemann L, et al. Definition, Klassifikation und Diagnostik des Diabetes mellitus. Diabetol Stoffwechsel. 2016;11(Suppl 2):S78–S81.  https://doi.org/10.1055/s-0042-115159.CrossRefGoogle Scholar
  6. 6.
    Ahlqvist E, Storm P, Karajamaki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9.CrossRefGoogle Scholar
  7. 7.
    Colagiuri S. Glycated haemoglobin (HbA1c) for the diagnosis of diabetes mellitus—practical implications. Diabetes Res Clin Pract. 2011;93(3):312–3.CrossRefGoogle Scholar
  8. 8.
    Roden M. Diabetes mellitus: Definition, classification and diagnosis. Wien Klin Wochenschr. 2012;124(Suppl 2):1–3.CrossRefGoogle Scholar
  9. 9.
    Kowall B, Rathmann W. HbA1c for diagnosis of type 2 diabetes. Is there an optimal cut point to assess high risk of diabetes complications, and how well does the 6.5% cutoff perform? Diabetes Metab Syndr Obes. 2013;6:477–91.CrossRefGoogle Scholar
  10. 10.
    Hübl W, Haushofer A, Weitgasser R. Gemeinsame Empfehlungen der ÖGLMKC und der ÖDG zur Referenzierung der HBA1C Bestimmung nach dem IFCC Standard. 2011. www.oeglmkc.at/down/HbA1c_Empfehlung2011.pdf. Zugegriffen: 25. Apr. 2018.Google Scholar
  11. 11.
    European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL–EASD–EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. Diabetologia. 2016;59(6):1121–40.CrossRefGoogle Scholar
  12. 12.
    Harreiter J, Kautzky-Willer A. Sex and gender differences in prevention of type 2 diabetes. Front Endocrinol (Lausanne). 2018;  https://doi.org/10.3389/fendo.2018.00220.CrossRefGoogle Scholar
  13. 13.
    Kowall B, Rathmann W, Strassburger K, et al. Association of passive and active smoking with incident type 2 diabetes in the elderly population: The KORA S4/F5 cohort study. Eur J Epidemiol. 2010;25(6):393–402.CrossRefGoogle Scholar
  14. 14.
    Haw JS, Galaviz KI, Straus AN, et al. Long-term sustainability of diabetes prevention approaches: A systematic review and meta-analysis of randomized clinical trials. JAMA Intern Med. 2017;177(12):1808–17.CrossRefGoogle Scholar
  15. 15.
    Glechner A, Harreiter J, Gartlehner G, et al. Sex-specific differences in diabetes prevention: A systematic review and meta-analysis. Diabetologia. 2015;58(2):242–54.CrossRefGoogle Scholar
  16. 16.
    Roberts S, Craig D, Adler A, McPherson K, Greenhalgh T. Economic evaluation of type 2 diabetes prevention programmes: Markov model of low- and high-intensity lifestyle programmes and metformin in participants with different categories of intermediate hyperglycaemia. BMC Med. 2018;  https://doi.org/10.1186/s12916-017-0984-4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li G, Zhang P, Wang J, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: A 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2(6):474–80.CrossRefGoogle Scholar
  18. 18.
    Panunzi S, De Gaetano A, Carnicelli A, Mingrone G. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: Do BMI or procedure choice matter? A meta-analysis. Ann Surg. 2015;261(3):459–67.CrossRefGoogle Scholar
  19. 19.
    Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.CrossRefGoogle Scholar
  20. 20.
    Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.CrossRefGoogle Scholar
  21. 21.
    Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: A 20-year follow-up study. Lancet. 2008;371(9626):1783–9.CrossRefGoogle Scholar
  22. 22.
    Ramachandran A, Snehalatha C, Mary S, et al. The Indian diabetes prevention programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49(2):289–97.CrossRefGoogle Scholar
  23. 23.
    Roumen C, Corpeleijn E, Feskens EJ, et al. Impact of 3‑year lifestyle intervention on postprandial glucose metabolism: The SLIM study. Diabet Med. 2008;25(5):597–605.CrossRefGoogle Scholar
  24. 24.
    Penn L, White M, Oldroyd J, et al. Prevention of type 2 diabetes in adults with impaired glucose tolerance: The European diabetes prevention RCT in Newcastle upon Tyne, UK. BMC Public Health. 2009;9:342.CrossRefGoogle Scholar
  25. 25.
    Saito T, Watanabe M, Nishida J, et al. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: A randomized controlled trial. Arch Intern Med. 2011;171(15):1352–60.CrossRefGoogle Scholar
  26. 26.
    Sakane N, Sato J, Tsushita K, et al. Prevention of type 2 diabetes in a primary healthcare setting: Three-year results of lifestyle intervention in Japanese subjects with impaired glucose tolerance. BMC Public Health. 2011;11(1):40.CrossRefGoogle Scholar
  27. 27.
    The American Diabetes Association (ADA). 5. Prevention or delay of type 2 diabetes: Standards of medical care in diabetes–2018. Diabetes Care. 2018;41(Suppl 1):S51–S4.CrossRefGoogle Scholar
  28. 28.
    Bian RR, Piatt GA, Sen A, et al. The effect of technology-mediated diabetes prevention interventions on weight: A meta-analysis. J Med Internet Res. 2017;19(3):e76.CrossRefGoogle Scholar
  29. 29.
    The American Diabetes Association (ADA). 4. Lifestyle management: Standards of medical care in diabetes–2018. Diabetes Care. 2018;41(Suppl 1):S38–S50.CrossRefGoogle Scholar
  30. 30.
    Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am J Clin Nutr. 2014;100(1):278–88.CrossRefGoogle Scholar
  31. 31.
    Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation. 2016;133(2):187–225.CrossRefGoogle Scholar
  32. 32.
    Mursu J, Virtanen JK, Tuomainen TP, Nurmi T, Voutilainen S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: The Kuopio ischaemic heart disease risk factor study. Am J Clin Nutr. 2014;99(2):328–33.CrossRefGoogle Scholar
  33. 33.
    Chen M, Sun Q, Giovannucci E, et al. Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med. 2014;12:215.CrossRefGoogle Scholar
  34. 34.
    Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: A collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42.CrossRefGoogle Scholar
  35. 35.
    Abuissa H, Jones PG, Marso SP, O’Keefe JH Jr.. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: A meta-analysis of randomized clinical trials. J Am Coll Cardiol. 2005;46(5):821–6.CrossRefGoogle Scholar
  36. 36.
    Zinman B, Harris SB, Neuman J, et al. Low-dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (CANOE trial): A double-blind randomised controlled study. Lancet. 2010;376(9735):103–11.CrossRefGoogle Scholar
  37. 37.
    Lindblad U, Lindberg G, Mansson NO, et al. Can sulphonylurea addition to lifestyle changes help to delay diabetes development in subjects with impaired fasting glucose? The Nepi ANtidiabetes StudY (NANSY). Diabetes Obes Metab. 2011;13(2):185–8.CrossRefGoogle Scholar
  38. 38.
    DeFronzo RA, Tripathy D, Schwenke DC, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364(12):1104–15.CrossRefGoogle Scholar
  39. 39.
    Investigators DT, Gerstein HC, Yusuf S, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: A randomised controlled trial. Lancet. 2006;368(9541):1096–105.CrossRefGoogle Scholar
  40. 40.
    Investigators DT, Bosch J, Yusuf S, et al. Effect of ramipril on the incidence of diabetes. N Engl J Med. 2006;355(15):1551–62.CrossRefGoogle Scholar
  41. 41.
    Chiasson JL, Josse RG, Gomis R, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: The STOP-NIDDM trial. JAMA. 2003;290(4):486–94.CrossRefGoogle Scholar
  42. 42.
    Kawamori R, Tajima N, Iwamoto Y, et al. Voglibose for prevention of type 2 diabetes mellitus: A randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet. 2009;373(9675):1607–14.CrossRefGoogle Scholar
  43. 43.
    Group NS, Holman RR, Haffner SM, et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1463–76.CrossRefGoogle Scholar
  44. 44.
    Group NS, McMurray JJ, Holman RR, et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1477–90.CrossRefGoogle Scholar
  45. 45.
    Investigators OT, Gerstein HC, Bosch J, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.CrossRefGoogle Scholar
  46. 46.
    Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: A randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155–61.CrossRefGoogle Scholar
  47. 47.
    Tenenbaum A, Motro M, Fisman EZ, et al. Effect of bezafibrate on incidence of type 2 diabetes mellitus in obese patients. Eur Heart J. 2005;26(19):2032–8.CrossRefGoogle Scholar
  48. 48.
    Insel R, Dunne JL. JDRF’s vision and strategy for prevention of type 1 diabetes. Pediatr Diabetes. 2016;17(Suppl 22):87–92.CrossRefGoogle Scholar
  49. 49.
    Hober D, Alidjinou EK. Diabetes: Towards a coxsackievirus B‑based vaccine to combat T1DM. Nat Rev Endocrinol. 2018;14(3):131–2.CrossRefGoogle Scholar
  50. 50.
    Deutsche Diabetes Gesellschaft (DDG). Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kindes- und Jugendalter – S3-Leitlinie der DDG und AGPD 2015. 2015.Google Scholar
  51. 51.
    Vaarala O, Klemetti P, Juhela S, et al. Effect of coincident enterovirus infection and cows’ milk exposure on immunisation to insulin in early infancy. Diabetologia. 2002;45(4):531–4.CrossRefGoogle Scholar
  52. 52.
    Monetini L, Cavallo MG, Stefanini L, et al. Bovine beta-casein antibodies in breast- and bottle-fed infants: Their relevance in type 1 diabetes. Diabetes Metab Res Rev. 2001;17(1):51–4.CrossRefGoogle Scholar
  53. 53.
    Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA. 2003;290(13):1721–8.CrossRefGoogle Scholar
  54. 54.
    Norris JM, Barriga K, Klingensmith G, et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA. 2003;290(13):1713–20.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin IIIMedizinische Universität WienWienÖsterreich
  2. 2.Klinik für Endokrinologie und Diabetologie, Medizinische FakultätHeinrich-Heine-UniversitätDüsseldorfDeutschland
  3. 3. Institut für Klinische Diabetologie, Deutsches Diabetes-Zentrum (DDZ)Leibniz-Zentrum für DiabetesforschungDüsseldorfDeutschland
  4. 4.Deutsches Zentrum für Diabetesforschung, DZD e. V.München-NeuherbergDeutschland

Personalised recommendations