Update on hyperbaric oxygen therapy in burn treatment

  • Laurenz WeitgasserEmail author
  • Gerald Ihra
  • Bruno Schäfer
  • Klaus Markstaller
  • Christine Radtke
review article


Hyperbaric oxygen therapy (HBOT) has been shown to improve tissue hypoxia, neovascularization and ischemia reperfusion injury and reduce pathologic inflammation in various clinical settings and was proposed to be a game changer in treatment of burns. Improved and faster wound healing as well as a reduction of morbidity and mortality after thermal and concomitant carbon monoxide poisoning are expected. In defiance of the observed benefits for burn wounds and carbon monoxide poisoning in animal models and few randomized controlled trials there is an ongoing controversy regarding its use, indications and cost effectiveness. Furthermore, the use of HBOT, its indications and the evidence behind its efficiency are still widely unknown to most physicians involved in the treatment of burn patients. Therefore, a review of the up to date evidence-based literature was performed with a focus on available data of HBOT in burn care, to elaborate its use in acute thermal injury and carbon monoxide intoxication. Although beneficial effects of HBOT seem very likely insufficient evidence to support or disprove the routine use of HBOT in the treatment of burn care was found. Although difficult to carry out because of the high interindividual variability of burns and chronic wounds, the need for larger high-quality prospective randomized double-blinded controlled multicenter trials are necessary to be able to evaluate useful applications, expense and cost-efficiency of HBOT for burn care.


Plastic surgery Reconstructive surgery Thermal injury Carbon monoxide Review 


Conflict of interest

L. Weitgasser, G. Ihra, B. Schäfer, K. Markstaller, and C. Radtke hereby officially declare that they have no conflict of interest in any form, financial or other and that the manuscript is original and written to the best of their knowledge and has not been submitted anywhere else.


  1. 1.
    Brusselaers N, Monstrey S, Vogelaers D, Hoste E, Blot S. Severe burn injury in europe : a systematic review of the incidence, etiology, morbidity, and mortality. Crit Care. 2010;14(5):R188.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Smolle C, Cambiaso-daniel J, Forbes AA, Wurzer P, Hundeshagen G, Branski LK. Recent trends in burn epidemiology worldwide : a systematic review. Burns. 2016; Scholar
  3. 3.
    Wada J, Ikeda K, Kagaya H, et al. Oxygen hyperbaric treatment and severe burn. Jap Med J. 1966;13:2203.Google Scholar
  4. 4.
    Sheikh AY, Gibson JJ, Rollins MD, Hopf HW, Hussain Z, Hunt TK. Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg. 2000;135(11):1293–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zamboni WA, Roth AC, Russell RC, Graham B, Suchy H, Kucan JO. Morphologic analysis of the microcirculation during reperfusion of ischemic skeletal muscle and the effect of hyperbaric oxygen. Plast Reconstr Surg. 1993;91(6):1110–23.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Nylander G, Lewis D, Nordström H, Larsson J. Reduction of postischemic edema with hyperbaric oxygen. Plast Reconstr Surg. 1985;76(4):596–603.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ernst A, Zibrak JD. Carbon monoxide poisoning. N Engl J Med. 1998;339:1603.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Weaver LK. Carbon monoxide poisoning. Crit Care Clin. 1999;15:297–317.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Thom SR, Taber RL, Mendiguren II, Clark JM, Hardy KR, Fisher AB. Delayed neuropsychologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Ann Emerg Med. 1995;25:474–80.CrossRefGoogle Scholar
  10. 10.
    Fife CE, Eckert KA, Carter MJ. An update on the appropriate role for hyperbaric oxygen: indications and evidence. Plast Reconstr Surg. 2016;107:16.Google Scholar
  11. 11.
    Cianci P, Sato R. Adjunctive hyperbaric oxygen therapy in the treatment of thermal burns : a review. Burns. 1994;20(1):5–14.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Saunders PJ. Hyperbaric oxygen therapy in the management of carbon monoxide poisoning, osteoradionecrosis, burns, skin grafts, and crush injury. Int J Technol Assess Health Care. 2003;19(3):521–5.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Strużyna J, Staroń K, Krajewski A. Hyperbaric oxygen therapy of burns. Pol J Surg. 2008;8:423–30.Google Scholar
  14. 14.
    Wasiak J, Bennett M, Cleland HJ. Hyperbaric oxygen as adjuvant therapy in the management of burns : can evidence guide clinical practice? Burns. 2006;32:650–2.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Villanueva E, Mh B, Wasiak J, Lehm JP. Hyperbaric oxygen therapy for thermal burns. Cochrane Database Syst Rev. 2004;3:CD4727.Google Scholar
  16. 16.
    Fry DE. The story of hyperbaric oxygen continues. Am J Surg. 2005;189(4):467–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Buckley NA, Isbister GK, Stokes B, Juurlink DN. Hyperbaric oxygen for carbon monoxide poisoning : a systematic review and critical analysis of the evidence. Toxicol Rev. 2005;24(2):75–92.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chiew AL, Buckley NA. Carbon monoxide poisoning in the 21st century. Crit Care. 2014;18(2):221.PubMedCentralCrossRefGoogle Scholar
  19. 19.
    Buckley NA, Juurlink DN, Isbister G, et al. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev. 2011; Scholar
  20. 20.
    Mathieu D, Marroni A, Kot J. Tenth European onsensus conference on hyperbaric medicine: recommendations for accepted and non-accepted clinical indications and practice of hyperbaric oxygen treatment. Diving Hyperb Med. 2017;47(1):24–32.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Edwards ML. Hyperbaric oxygen therapy. Part 1: history and principles. J Vet Emerg Crit Care. 2010;20(3):284–8.CrossRefGoogle Scholar
  22. 22.
    Jain KK. The history of hyperbaric medicine. 4th ed. Textbook of hyperbaric medicine. 2004. pp. 3–8.Google Scholar
  23. 23.
    Singh S, Gambert SR. Hyperbaric oxygen therapy: a brief history and review of its benefits and indications for the older adult patient. Ann Longterm Care. 2014;22(7/8):37–42.Google Scholar
  24. 24.
    Boerema I, Meyne NG, Brummelkamp WH, Boumas S, Mensch MH, Kamermans F, et al. Life without blood. J Cardiovasc Surg. 1959;13:133–46.Google Scholar
  25. 25.
    Clark D. History of hyperbaric therapy. In: Neuman TS, Thom SR, editors. Physiology and medicine of hyperbaric oxygen therapy. 1st ed. Philadelphia, PA: Saunders; 2008. pp. 3–18.CrossRefGoogle Scholar
  26. 26.
    Thom SR. Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg. 2011;127(1):131–41.CrossRefGoogle Scholar
  27. 27.
    Kemp M, Go Y, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems : a perspective on redox systems biology. Free Radic Biol Med. 2008;44:921–37.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hills BA. A role for oxygen-induced osmosis in hyperbaric oxygen therapy. Med Hypotheses. 1999;52(3):259–63.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Uhl E, Sirsjö A, Haapaniemi T, Nilsson G, Nylander G. Hyperbaric oxygen improves wound healing in normal and ischemic skin tissue. Plast Reconstr Surg. 1994;93(4):835–41.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Grimberg-Peters D, Büren C, Windolf J, Wahlers T, Paunel-Görgülü A. Hyperbaric oxygen reduces production of reactive oxygen species in neutrophils from polytraumatized patients yielding in the inhibition of p38 MAP kinase and downstream pathways. PLoS ONE. 2016;11(8):e161343.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Choudhury R. Hypoxia and hyperbaric oxygen therapy: a review. Int J Gen Med. 2018;11:431–42.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tibbles PM, Edelsberg JS. Hyperbaric-oxygen therapy. N Engl J Med. 1996;334(25):1642–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Heyboer M, Sharma D, Santiago W, Mcculloch N. Hyperbaric oxygen therapy: side effects defined and quantified. Adv Wound Care. 2017;6(6):210–24.CrossRefGoogle Scholar
  35. 35.
    Davis JC. Hyperbaric oxygen therapy. J Intensive Care Med. 1989;4:55–7.CrossRefGoogle Scholar
  36. 36.
    Lyne AJ. Ocular effects of hyperbaric oxygen. Trans Ophthalmol Soc U K. 1978;98:66–8.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Wilkinson D, Chapman IM, Heilbronn LK. Hyperbaric oxygen therapy improves peripheral insulin sensitivity in humans. Diabet Med. 2012;29:986–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Fife WP, Fife CE. Hyperbaric oxygen therapy in chronic lyme disease. In: Jain KK, editor. Textbook of hyperbaric medicine. 5th ed. Göttingen: Hogrefe; 2009. pp. 149–55.Google Scholar
  39. 39.
    Fife CE, Eckert KA, Workman WT. Ethical issues, standards and quality control in practice of hyperbaric medicine. In: Jain KK, editor. Textbook of hyperbaric medicine. 6th ed. New York, NY: Springer; 2016.Google Scholar
  40. 40.
    Gesell LB, editor. Hyperbaric oxygen therapy indications. 12th ed. Durham, NC: Undersea and Hyperbaric Medical Society; 2008. pp. 7–196.Google Scholar
  41. 41.
    Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Dalkey NC. The Delphi method: an experimental study of groupopinion. Santa Monica, CA: Rand Corporation; 1969.Google Scholar
  43. 43.
    Shoshani O, Shupak A, Barak A, Ullman Y, Ramon Y, Lindenbaum E, et al. Hyperbaric oxygen therapy for deep second degree burns : an experimental study in the guinea pig. Br J Plast Surg. 1998;51(1):67–73.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kiyan BG, Aktas S, Ozel K, Kotiloglu E, Dagli TE. Effects of hyperbaric oxygen therapy on caustic esophageal injury in rats. J Pediatr Surg. 2004;39(8):1188–93.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hatibie MJ, Islam AA, Hatta M, Moenadjat Y, Susilo RH, Rendy L. Hyperbaric oxygen therapy for second-degree burn healing: an experimental study in rabbits. Adv Skin Wound Care. 2019;32(3):1–4.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Selçuk CT, Özalp B, Durgun M. The effect of hyperbaric oxygen treatment on the healing of burn wounds in nicotinized and nonnicotinized rats. J Burn Care Res. 2013;34(4):237–43.CrossRefGoogle Scholar
  47. 47.
    Dinar S, Agir H, Sen C, Yazir Y, Dalcık H, Unal C. Effects of hyperbaric oxygen therapy on fibrovascular ingrowth in porous polyethylene blocks implanted under burn scar tissue : an experimental study. Burns. 2008;34(4):467–73.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Türkaslan T, Yogun N, Cimsit M, Solakoglu S, Ozdemir C, Ozsoy Z. Is HBOT treatment effective in recovering zone of stasis? An experimental immunohistochemical study. Burns. 2010;36(4):539–44.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Akin ML. Hyperbaric oxygen prevents bacterial translocation in thermally injured rats. J Invest Surg. 2002;15(6):303–10.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Jones LM, Rubadue C, Brown NV, Khandelwal S, Coffey RA. Evaluation of TCOM/HBOT practice guideline for the treatment of foot burns occurring in diabetic patients. Burns. 2014;41(3):536–41.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Jones LM, Coffey R, Khandelwal S, Atway S, Gordillo G, Murphy C, et al. A clinician’ s guide to the treatment of foot burns occurring in diabetic patients. Burns. 2014; Scholar
  52. 52.
    Ballard JL, Eke CC, Bunt TJ, Killeen JD. A prospective evaluation of transcutaneous oxygen measurements in the management of diabetic foot problems. J Vasc Surg. 1995;22(4):485–90.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Greenhalgh DG. Wound healing and diabetes mellitus. Clin Plast Surg. 2003;30(1):37–45.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Warriner R, Hopf H. Enhancement of healing in related problem wounds Hyperbaric oxygen therapy indications. Undersea Hyperb Med. 2012;39(5):923–35.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Fife CE, Buyukcakir CEM, Otto GH, Sheffield PJ. The predictive value of transcutaneous oxygen tension measurement in diabetic lower extremity ulcers treated with hyperbaric oxygen therapy : a retrospective analysis of 1144 patients. Wound Repair Regen. 2002;10(4):198–207.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Harward TR, Volny J, Golbranson F, Bernstein EF, Fronek A. Oxygen inhalation—induced transcutaneous PO2 changes as a predictor of amputation level. J Vasc Surg. 1985;2(1):220–7.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Brannen AL, Still J, Haynes M. A randomized prospective trial of hyperbaric oxygen in a referral burn center population. Am Surg. 1997;63:205–8.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Hart G, O’Reilly R, Broussard N, Cave R, Goodman D, Yanda R. Treatment of burns with hyperbaric oxygen. Surg Gynecol Obstet. 1974;139(5):693–6.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Tibbles PM, Edelsberg JS. Hyperbaric-oxygen therapy. N Engl J Med. 1996;334:1642.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Piantadosi CA. Diagnosis and treatment of carbon monoxide poisoning. Respir Care Clin N Am. 1999;5:183–202.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Pace N, Strajman E, Walker EL. Acceleration of carbon monoxide elimination in man by high pressure oxygen. Science. 1950;111:652–4.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Thom SR. Functional inhibition of leukocyte B2 integrins by hyperbaric oxygen in carbon monoxide-mediated brain injury in rats. Toxicol Appl Pharmacol. 1993;123:248–56.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hampson NB, editor. Hyperbaric oxygen therapy: 1999 committee report. 1999.Google Scholar
  64. 64.
    Baud FJ. Cyanide: critical issues in diagnosis and treatment. Hum Exp Toxicol. 2007;26(3):191–201.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Pearce LL, Bominaar EL, Hill BC, Peterson J. Reversal of cyanide inhibition of cytochrome c oxidase by the auxiliary substrate nitric oxide. J Biol Chem. 2003;278(52):52139–45.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Pearce LL, Manzano EL, Martinez-Bosch S, Peterson J. Antagonism of nitric oxide toward the inhibition of cytochrome c oxidase by carbon monoxide and cyanide. Chem Res Toxicol. 2008;21(11):2073–81.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lawson-Smith P, Jansen EC, Hyldegaard O. Cyanide intoxication as part of smoke inhalation—a review on diagnosis and treatment from the emergency perspective. Scand J Trauma Resusc Emerg Med. 2011; Scholar
  68. 68.
    Lawson-Smith P, Jansen EC, Hilsted L, Hyldegaard O. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents. Scand J Trauma Resusc Emerg Med. 2010;3:1–6.Google Scholar
  69. 69.
    Allen BW, Demchenko IT, Piantadosi CA. Two faces of nitric oxide : implications for cellular mechanisms of oxygen toxicity. J Appl Physiol. 2009;106(2):662–7.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Xu X, Wang Z, Li Q, Xiao X, Lian Q, Xu W, et al. Endothelial nitric oxide synthase expression is progressively increased in primary cerebral microvascular endothelial cells during hyperbaric oxygen exposure. Oxid Med Cell Longev. 2009;2(1):7–13.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hampson NB, Piantadosi CA, Thom SR, Weaver LK. Practice recommendations in the diagnosis, management, and prevention of carbon monoxide poisoning. Am J Respir Crit Care Med. 2012;186:1095–101.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Hampson NB, Hauff NM. Risk factors for short-term mortality from carbon monoxide poisoning treated with hyperbaric oxygen. Crit Care Med. 2008;36:2523–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hampson NB, Dunn SL. Symptoms of carbon monoxide poisoning do not correlate with the initial carboxyhemoglobin level. Undersea Hyperb Med. 2012;39:657–65.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Hampson NB. Noninvasive pulse CO-oximetry expedites evaluation and management of patients with carbon monoxide poisoning. Am J Emerg Med. 2012;30:2021–4.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hampson NB, Dunford RG, Norkool DM. Treatment of carbon monoxide poisonings in multiplace hyperbaric chambers. J Hyperb Med. 1992;7:165–71.Google Scholar
  76. 76.
    Annane D, Chadda K, Gajdos P, Jars-Guincestre MC, Chevret S, Raphael JC. Hyperbaric oxygen therapy for acute domestic carbon monoxide poisoning: two randomized controlled trials. Intensive Care Med. 2011;37:486–92.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Guilliod RR, Pompeo MQ. Discussion: an update on the appropriate role for hyperbaric oxygen: indications and evidence. Plast Reconstr Surg. 2016;138(3):117S–8S.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Laurenz Weitgasser
    • 1
    Email author
  • Gerald Ihra
    • 2
  • Bruno Schäfer
    • 2
  • Klaus Markstaller
    • 2
  • Christine Radtke
    • 1
  1. 1.Department of Plastic and Reconstructive SurgeryMedical University of ViennaViennaAustria
  2. 2.Department of Anesthesia, General Intensive Care and Pain ManagementMedical University of ViennaViennaAustria

Personalised recommendations