Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 136, Issue 2, pp 216–223 | Cite as

Dreidimensionale Temperaturverteilung in großen Wasserkraftgeneratoren: effiziente Simulation und Optimierung

  • Georg Traxler-SamekEmail author
  • Daniel Langmayr
Originalarbeit
  • 21 Downloads

Zusammenfassung

In großen luftgekühlten Hydrogeneratoren in Synchronmaschinen-Ausführung werden die anfallenden Verluste über einen erzwungenen Kühlluftstrom gekühlt. Zur Vermeidung hoher Ventilationsverluste, die durch Luftreibung und den entsprechenden Aufwand für die Druckerzeugung entstehen, werden die Kühlluftströme derart dimensioniert, dass diese die Verlustquellen – also vor allem die Aktivteile – forciert kühlen. Dazu muss der Generator als Ganzes betrachtet und optimiert werden. In dieser Arbeit wird ein Berechnungsverfahren zur Ermittlung des dreidimensionalen Temperaturfelds in Wasserkraftgeneratoren hoher Leistung vorgestellt und anhand von Berechnungs- und Messergebnissen evaluiert.

Schlüsselwörter

Kühlung Hydrogenerator Synchrongenerator Temperatur 

Three-dimensional temperature distribution in large hydro-generators: efficient simulation and optimization

Abstract

In large air-cooled hydro-generators, designed as salient-pole synchronous machines, a forced cooling air-flow evacuates power losses. In order to optimize ventilation losses caused by air-friction and fan air-pressure generation, the cooling-air distribution is set up in such a way that loss sources – mainly the active parts of the generator – are intensely cooled. For this purpose, the generator as a whole must be considered and optimized. This paper presents a calculation method for determining the three-dimensional temperature field in large hydro-generators and validates calculation results with measurements.

Keywords

cooling hydro-generator synchronous generator temperature 

Notes

Literatur

  1. 1.
    Baehr, H. D., Stephan, K. (2010): Wärme- und Stoffübertragung. Berlin: Springer. CrossRefGoogle Scholar
  2. 2.
    Binder, A. (2009): Lecture book: large generators and high power drives. Darmstadt: Darmstadt University of Technology. Google Scholar
  3. 3.
    Boglietti, A., Cavagnino, A., Staton, D., Shanel, M., Mueller, M., Mejuto, C. (2009): Evolution and modern approaches for thermal analysis of electrical machines. IEEE Trans. Ind. Electron., 56(3), 871–882. CrossRefGoogle Scholar
  4. 4.
    Contreras, J., Traxler-Samek, G., Schofer, S., Spring, S. (2015): Validation of the CFD calculation of a complete hydro-generator by measurements. In Proc. of the hydro 2015 conference. Google Scholar
  5. 5.
    Depraz, R., Zickermann, R., Schwery, A., Avellan, F. (2006): CFD validation and air cooling design methodology for large hydro generator. In Proc. 17th international conference on electrical machines ICEM. Google Scholar
  6. 6.
    Farnleitner, E., Kastner, G. (2010): Moderne Methoden der Ventilationsauslegung von Pumpspeichergeneratoren. E&I, Elektrotech. Inf.tech., 127, 24–29. CrossRefGoogle Scholar
  7. 7.
    Hestenes, M., Stiefel, E. (1952): Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., 49(6), 409–436. MathSciNetCrossRefGoogle Scholar
  8. 8.
    Idelchik, I. E. (1994): Handbook of hydraulic resistance. Boca Raton: CRC Press. Google Scholar
  9. 9.
    Kakac, S., Shah, R. K., Aung, W. (1987): Handbook of single-phase convective heat transfer. New York: Wiley. Google Scholar
  10. 10.
    Klomberg, S. (2015): Heat transfer model for end winding cooling of hydro generators by computational fluid dynamics analysis. PhD thesis, Graz University of Technology. Google Scholar
  11. 11.
    Schrittwieser, M., Biro, O., Farnleitner, E., Kastner, G. (2014): Validation of numerical approaches for simulating the heat transfer in stator ducts with measurements. IEEE Trans. Magn., 50(2), 261–264. CrossRefGoogle Scholar
  12. 12.
    Schrittwieser, M., Biro, O., Farnleitner, E., Kastner, G. (2015): Analysis of temperature distribution in the stator of large synchronous machines considering heat conduction and heat convection. IEEE Trans. Mag., 51(3). CrossRefGoogle Scholar
  13. 13.
    Traxler-Samek, G. (2003): Zusatzverluste im Stirnraum von Hydrogeneratoren mit Roebelstabwicklung. PhD thesis, Vienna University of Technology. Google Scholar
  14. 14.
    Traxler-Samek, G. (2014): Analytical and numerical design methods for the electromechanical calculation of hydro-generators. Habilitationsschrift, Technische Universität Darmstadt. Google Scholar
  15. 15.
    Traxler-Samek, G., Ardley, G. (2009): Iron losses in salient-pole synchronous machines considering unidirectional and elliptic magnetization. In Proc. 8th international symposium on advanced electromechanical motion systems, ELECTROMOTION. Google Scholar
  16. 16.
    Traxler-Samek, G., Schwery, A., Zickermann, R., Ramirez, C. (2004): Optimised calculation of losses in large hydrogenerators using statistical methods. In Proc. 16th international conference on electrical machines, ICEM. Google Scholar
  17. 17.
    Traxler-Samek, G., Zickermann, R., Schwery, A. (2008): Advanced calculation of temperature rises in large air-cooled hydro-generators. In Proc. 18th international conference on electrical machines, ICEM. Google Scholar
  18. 18.
    Traxler-Samek, G., Zickermann, R., Schwery, A. (2010): Cooling airflow, losses, and temperature in large air-cooled synchronous machines. IEEE Trans. Ind. Electron., 57(1), 172–180. CrossRefGoogle Scholar
  19. 19.
    Traxler-Samek, G., Schwery A, J. B. (2011): Kühlung von lufgekühlten Wasserkraftgeneratoren bei verschiedenen Betriebszuständen. E&I, Elektrotech. Inf.tech., 128 (5). Google Scholar
  20. 20.
    Weili, L., Yu, Z., Yuhong, C. (2011): Calculation and analysis of heat transfer coefficients and temperature fields of air-cooled large hydro-generator rotor excitation windings. IEEE Trans. Eng. Conv., 26 (3). CrossRefGoogle Scholar
  21. 21.
    Weili, L., Dan, L., Jinyang, L., Xiaochen, Z. (2017): Influence of rotor radial ventilation ducts number on temperature distribution of rotor excitation winding and fluid flow state between two poles of a fully air-cooled hydro-generator. IEEE Trans. Indust. Electron., 64 (5). Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.ANDRITZ HYDRO AGKriensSchweiz
  2. 2.ANDRITZ HYDRO GmbHWeizÖsterreich

Personalised recommendations