Terminal observer and disturbance observer for the class of fractional-order chaotic systems

  • Mohammad Reza SoltanpourEmail author
  • Mehrdad Shirkavand
Methodologies and Application


In this paper, a terminal fractional-order observer and a terminal disturbance observer is proposed to estimate internal states and external disturbances of the class of fractional-order chaotic systems. The estimation of states within fixed time is achieved by employing a nonlinear feedback in terms of the observer error. The fixed convergence time is not relevant to the initial conditions and can be adjusted to any desired values by tuning the designable parameters. Finally, the numerical simulations are performed on fractional-order chaotic Liu, Chen, and Financial systems to validate the theoretical results. Moreover, some numerical simulations are provided to compare the obtained theoretical results with the other methods in the literature.


Fractional order Chaos Terminal Finite time Fixed time Observer Disturbance observer Liu Financial Chen Arnodo–Coullet Modified Jerk Lu 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Human and animals rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Aghababa MP, Hashtarkhani B (2015) A new adaptive observer design for a class of nonautonomous complex chaotic systems. Complexity 21(2):145–153MathSciNetCrossRefGoogle Scholar
  2. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766MathSciNetzbMATHCrossRefGoogle Scholar
  3. Boroujeni EA, Momeni HR (2012) Observer based control of a class of nonlinear fractional-order systems using LMI. Int J Sci Eng Investig 1(1):48–52Google Scholar
  4. Boulkroune A, Bouzeriba A, Bouden T, Azar AT (2016a) Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In: Advances in chaos theory and intelligent control. Springer, pp 681–697Google Scholar
  5. Boulkroune A, Hamel S, Azar AT, Vaidyanathan S (2016b) Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In: Advances in chaos theory and intelligent control. Springer, pp 699-718Google Scholar
  6. Butzer PL, Westphal U (2000) An introduction to fractional calculus. In: Applications of Fractional Calculus in Physics. pp 1-85zbMATHGoogle Scholar
  7. Cafagna D, Grassi G (2012) Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems. Nonlinear Dyn 68(1):117–128zbMATHCrossRefGoogle Scholar
  8. Chen M, Zhou D, Shang Y (2005) A new observer-based synchronization scheme for private communication. Chaos, Solitons Fractals 24(4):1025–1030zbMATHCrossRefGoogle Scholar
  9. Chen M, Wu Q, Jiang C (2012) Disturbance-observer-based robust synchronization control of uncertain chaotic systems. Nonlinear Dyn 70(4):2421–2432. MathSciNetCrossRefGoogle Scholar
  10. Cheng Z-F, Shi D-P (2010) Chaos in a fractional-order nonlinear financial system. In: Intelligent Systems and Applications (ISA), 2010 2nd International Workshop on, 2010. IEEE, pp 1-3Google Scholar
  11. Cruz-Victoria JC, Martínez-Guerra R, Pérez-Pinacho CA, Gómez-Cortés GC (2015) Synchronization of nonlinear fractional order systems by means of PI rα reduced order observer. Appl Math Comput 262:224–231MathSciNetzbMATHGoogle Scholar
  12. Defoort M, Polyakov A, Demesure G, Djemai M, Veluvolu K (2015) Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics. IET Control Theory Appl 9(14):2165–2170MathSciNetCrossRefGoogle Scholar
  13. Delavari H, Senejohnny D, Baleanu D (2012) Sliding observer for synchronization of fractional order chaotic systems with mismatched parameter. Open Physics 10(5):1095–1101CrossRefGoogle Scholar
  14. Diethelm K (2010) The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer,Google Scholar
  15. Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29(1–4):3–22MathSciNetzbMATHCrossRefGoogle Scholar
  16. Diethelm K, Ford NJ, Freed AD, Luchko Y (2005) Algorithms for the fractional calculus: a selection of numerical methods. Comput Methods Appl Mech Eng 194(6–8):743–773MathSciNetzbMATHCrossRefGoogle Scholar
  17. Djeghali N, Djennoune S, Bettayeb M, Ghanes M, Barbot J-P (2016) Observation and sliding mode observer for nonlinear fractional-order system with unknown input. ISA Trans 63:1–10CrossRefGoogle Scholar
  18. Filali RL, Benrejeb M, Borne P (2014) On observer-based secure communication design using discrete-time hyperchaotic systems. Commun Nonlinear Sci Numer Simul 19(5):1424–1432MathSciNetCrossRefGoogle Scholar
  19. Guce IK (2013) On fractional derivatives: the non-integer order of the derivative. International Journal of Scientific & Engineering, Research 4(3):1Google Scholar
  20. Hardy G, Littlewood J, Polya G (1952) Inequalities. Press, Cambridge UzbMATHGoogle Scholar
  21. Hassan MF (2016) Synchronization of uncertain constrained hyperchaotic systems and chaos-based secure communications via a novel decomposed nonlinear stochastic estimator. Nonlinear Dyn 83(4):2183–2211. MathSciNetCrossRefzbMATHGoogle Scholar
  22. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific,Google Scholar
  23. Ibrir S (2006) On observer design for nonlinear systems. Int J Syst Sci 37(15):1097–1109MathSciNetzbMATHCrossRefGoogle Scholar
  24. Jun-Jie L, Chong-Xin L (2007) Realization of fractional-order Liu chaotic system by circuit. Chin Phys 16(6):1586CrossRefGoogle Scholar
  25. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45MathSciNetCrossRefGoogle Scholar
  26. Khan H, Abou SC, Sepehri N (2005) Nonlinear observer-based fault detection technique for electro-hydraulic servo-positioning systems. Mechatronics 15(9):1037–1059CrossRefGoogle Scholar
  27. Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations Elsevier. Amsterdam,Google Scholar
  28. Laghrouche S, Liu J, Ahmed FS, Harmouche M, Wack M (2015) Adaptive second-order sliding mode observer-based fault reconstruction for PEM fuel cell air-feed system. IEEE Trans Control Syst Technol 23(3):1098–1109CrossRefGoogle Scholar
  29. Lan Y-H, Zhou Y (2013) Non-fragile observer-based robust control for a class of fractional-order nonlinear systems. Syst Control Lett 62(12):1143–1150MathSciNetzbMATHCrossRefGoogle Scholar
  30. Lan Y-H, Huang H-X, Zhou Y (2012) Observer-based robust control of a (1 ≤ a < 2) fractional-order uncertain systems: a linear matrix inequality approach. IET Control Theory Appl 6(2):229–234MathSciNetCrossRefGoogle Scholar
  31. Lan Y-H, Gu H-B, Chen C-X, Zhou Y, Luo Y-P (2014) An indirect Lyapunov approach to the observer-based robust control for fractional-order complex dynamic networks. Neurocomputing 136:235–242CrossRefGoogle Scholar
  32. Li C, Yan J (2007) The synchronization of three fractional differential systems. Chaos, Solitons Fractals 32(2):751–757. CrossRefGoogle Scholar
  33. Li C, Deng WJAM, Computation (2007) Remarks on fractional derivatives. 187 (2):777-784Google Scholar
  34. Li H, Gao Y, Shi P, Lam H-K (2016a) Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans Autom Control 61(9):2745–2751MathSciNetzbMATHCrossRefGoogle Scholar
  35. Li L, Ding SX, Qiu J, Yang Y, Zhang Y (2016b) Weighted fuzzy observer-based fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions. IEEE Trans Fuzzy Syst 24(6):1320–1333CrossRefGoogle Scholar
  36. Liu X, Yuan S (2012) Reduced-order fault detection filter design for switched nonlinear systems with time delay. Nonlinear Dyn 67(1):601–617. MathSciNetCrossRefzbMATHGoogle Scholar
  37. Lü L, Li Y, Sun A (2013) Parameter identification and chaos synchronization for uncertain coupled map lattices. Nonlinear Dyn 73(4):2111–2117. MathSciNetCrossRefGoogle Scholar
  38. Luenberger DG (1964) Observing the state of a linear system. IEEE transactions on military electronics 8(2):74–80CrossRefGoogle Scholar
  39. Luo S, Li S, Tajaddodianfar F, Hu J (2018) Observer-based adaptive stabilization of the fractional-order chaotic MEMS resonator. Nonlinear Dyn 92(3):1079–1089. CrossRefzbMATHGoogle Scholar
  40. Mahmoud GM, Aly SA, AL-Kashif MA (2008) Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dyn 51(1):171–181. MathSciNetCrossRefzbMATHGoogle Scholar
  41. Matignon D, d’Andréa-Novel B Some results on controllability and observability of finite-dimensional fractional differential systems. In: Computational engineering in systems applications, 1996. Citeseer, pp 952-956Google Scholar
  42. Mengue AD, Essimbi BZ (2012) Secure communication using chaotic synchronization in mutually coupled semiconductor lasers. Nonlinear Dyn 70(2):1241–1253. MathSciNetCrossRefGoogle Scholar
  43. N’Doye I, Darouach M, Voos H Observer-based approach for fractional-order chaotic synchronization and communication. In: 2013 European Control Conference (ECC), 2013a. IEEE, pp 4281-4286Google Scholar
  44. N’Doye I, Voos H, Darouach M (2013) Observer-based approach for fractional-order chaotic synchronization and secure communication. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 3(3):442–450CrossRefGoogle Scholar
  45. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic press,Google Scholar
  46. Polyakov A (2012) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110MathSciNetzbMATHCrossRefGoogle Scholar
  47. Polyakov A Fixed-time stabilization of linear systems via sliding mode control. In: Variable Structure Systems (VSS), 2012 12th International Workshop on, 2012a. IEEE, pp 1-6Google Scholar
  48. Rahme S, Meskin N (2015) Adaptive sliding mode observer for sensor fault diagnosis of an industrial gas turbine. Control Engineering Practice 38:57–74CrossRefGoogle Scholar
  49. Senejohnny DM, Delavari H (2012) Active sliding observer scheme based fractional chaos synchronization. Commun Nonlinear Sci Numer Simul 17(11):4373–4383MathSciNetzbMATHCrossRefGoogle Scholar
  50. Shao S, Wheeler PW, Clare JC, Watson AJ (2013) Fault detection for modular multilevel converters based on sliding mode observer. IEEE Trans Power Electron 28(11):4867–4872CrossRefGoogle Scholar
  51. Shao S, Chen M, Yan X (2016) Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dyn 83(4):1855–1866MathSciNetzbMATHCrossRefGoogle Scholar
  52. Slotine J, Li W (1998) Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991. Google ScholarGoogle Scholar
  53. Smith AH, Monti A, Ponci F (2007) Indirect measurements via a polynomial chaos observer. IEEE Trans Instrum Meas 56(3):743–752CrossRefGoogle Scholar
  54. Spurgeon SK (2008) Sliding mode observers: a survey. Int J Syst Sci 39(8):751–764MathSciNetzbMATHCrossRefGoogle Scholar
  55. Su H, Luo R, Zeng Y (2017) The observer-based synchronization and parameter estimation of a class of chaotic system via a single output. Pramana 89(5):78. CrossRefGoogle Scholar
  56. Tan CP, Yu X, Man Z (2010) Terminal sliding mode observers for a class of nonlinear systems. Automatica 46(8):1401–1404MathSciNetzbMATHCrossRefGoogle Scholar
  57. Tornambè A (1992) Asymptotic observers for non-linear systems. Int J Syst Sci 23(3):435–442MathSciNetzbMATHCrossRefGoogle Scholar
  58. Wang H, Han Z, Zhang W, Xie Q (2008) Chaotic synchronization and secure communication based on descriptor observer. Nonlinear Dyn 57(1):69. CrossRefzbMATHGoogle Scholar
  59. Wang H, Zhu X-J, Gao S-W, Chen Z-Y (2011) Singular observer approach for chaotic synchronization and private communication. Commun Nonlinear Sci Numer Simul 16(3):1517–1523CrossRefGoogle Scholar
  60. Wang J, Ma Q, Zeng L (2013) Observer-based synchronization in fractional-order leader–follower complex networks. Nonlinear Dyn 73(1):921–929. MathSciNetCrossRefzbMATHGoogle Scholar
  61. Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series, vol 7. MIT press Cambridge, MAzbMATHGoogle Scholar
  62. Yao J, Jiao Z, Ma D (2014) Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Trans Industr Electron 61(11):6285–6293CrossRefGoogle Scholar
  63. Yu J, Ma Y, Yu H, Lin C (2016) Reduced-order observer-based adaptive fuzzy tracking control for chaotic permanent magnet synchronous motors. Neurocomputing 214:201–209CrossRefGoogle Scholar
  64. Zhang R, Gong J (2014) Synchronization of the fractional-order chaotic system via adaptive observer. Systems Science & Control Engineering: An Open Access Journal 2(1):751–754CrossRefGoogle Scholar
  65. Zuo Z, Tie L (2016) Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int J Syst Sci 47(6):1366–1375MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Sattari Aeronautical University of Science and TechnologyTehranIran

Personalised recommendations