Advertisement

Soft Computing

, Volume 23, Issue 21, pp 10635–10648 | Cite as

On the free frontal implicative semilattice extension of a frontal Hilbert algebra

  • Ramon Jansana
  • Hernán J. San MartínEmail author
Foundations

Abstract

In this paper, we define a functor which is left adjoint to the forgetful functor from the category of frontal implicative semilattices to that of frontal Hilbert algebras.

Keywords

Hilbert algebras Implicative semilattices Modal operators 

Notes

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 689176. The first author was also partially supported by the research grant 2014 SGR 788 from the government of Catalonia and by the research projects MTM2016-74892-P from the government of Spain, which includes feder funds from the European Union and he also acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0445). The second author was also supported by CONICET Project PIP 112-201501-00412.

Compliance with ethical standards

Conflict of interest

Both authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with animals or humans performed by any of the authors.

References

  1. Balbes R, Dwinger P (1974) Distributive lattices. University of Missouri Press, ColumbiazbMATHGoogle Scholar
  2. Buşneag D (1985) A note on deductive systems of a Hilbert algebra. Kobe J Math 2:29–35MathSciNetzbMATHGoogle Scholar
  3. Buşneag D, Ghiţǎ M (2010) Some latticial properties of Hilbert algebras. Bull Math Soc Sci Math 53(101 No. 2):87–107MathSciNetzbMATHGoogle Scholar
  4. Caicedo X, Cignoli R (2001) An algebraic approach to intuitionistic connectives. J Symb Log 66(4):1620–1636MathSciNetCrossRefGoogle Scholar
  5. Castiglioni JL, San Martín HJ (2012) On some classes of Heyting algebras with successor that have the amalgamation property. Studia Logica 6(6):1255–1269MathSciNetCrossRefGoogle Scholar
  6. Castiglioni JL, San Martín HJ (2015) On frontal operators in Hilbert algebras. Log J IGPL 23(2):217–234MathSciNetCrossRefGoogle Scholar
  7. Castiglioni JL, San Martín HJ (2018) Variations of the free implicative semilattice extension of a Hilbert algebra. Soft Comput  https://doi.org/10.1007/s00500-018-3426-0
  8. Castiglioni JL, Sagastume M, Martín HJ San (2010) On frontal Heyting algebras. Rep Math Log 45:201–224MathSciNetzbMATHGoogle Scholar
  9. Celani SA (2002) A note on homomorphism of Hilbert algebras. Int J Math Math Sci 29(1):55–61MathSciNetCrossRefGoogle Scholar
  10. Celani SA, Jansana R (2012) On the free implicative semilattice extension of a Hilbert algebra. Math Log Q 58(3):188–207MathSciNetCrossRefGoogle Scholar
  11. Curry HB (1963) Foundations of mathematical logic. McGraw-Hill, New YorkzbMATHGoogle Scholar
  12. Diego A (1965) Sobre Algebras de Hilbert. Notas de Lógica Matemática. Instituto de Matemática. Universidad Nacional del Sur, Bahía BlancaGoogle Scholar
  13. Esakia L (2006) The modalized Heyting calculus: a conservative modal extension of the Intuitionistic Logic. J Appl Non Cl Log 16–Nro.3–4:349–366MathSciNetCrossRefGoogle Scholar
  14. Esakia L (2019) Heyting algebras. Duality theory. In: Bezhanishvili G, Holiday WH (eds) Trends in logic 50. Springer, BerlinGoogle Scholar
  15. Gabbay DM (1977) On some new intuitionistic propositional connectives. I. Studia Logica 36:127–139MathSciNetCrossRefGoogle Scholar
  16. Gehrke M, Jansana R, Palmigiano A (2013) \(\Delta _1\)-completions of a poset. Order 30:39–64Google Scholar
  17. González L (2019) Completely distributive completions of posets. To appear in Acta Mathematica HungaricaGoogle Scholar
  18. Horn A (1962) The separation theorem of intuitionistic propositional calculus. J Symb Log 27:391–399CrossRefGoogle Scholar
  19. Kaarli K, Pixley AF (2001) Polynomial completeness in algebraic systems. Chapman and Hall/CRC, Boca ratonzbMATHGoogle Scholar
  20. Köhler P (1981) Brouwerian semilattices. Trans Am Math Soc 268(1):103–126MathSciNetCrossRefGoogle Scholar
  21. Kuznetsov AV (1979) On algebras of open sets. In: The 4th Tiraspol symposium on general topology and its applications, abstracts, Shtiintsa, Kishinev (in Russian)Google Scholar
  22. Kuznetsov AV (1985) On the propositional calculus of intuitionistic provability. Soviet Math Dokl 32:18–21zbMATHGoogle Scholar
  23. Mal’cev AI (1971) The mathematics of algebraic systems, collected papers: 1936–1967. North-Holland Pub. Co., AmsterdamGoogle Scholar
  24. Monteiro A (1955) Axiomes independents pour les algebres de Brouwer. Revista de la Unión Matemática Argentina y de la Asociación Física Argentina 27:149–160zbMATHGoogle Scholar
  25. Nemitz W (1965) Implicative semi-lattices. Trans Am Math Soc 117:128–142MathSciNetCrossRefGoogle Scholar
  26. Nemitz W, Whaley T (1971) Varieties of implicative semilattices. Pac J Math 37:759–769MathSciNetCrossRefGoogle Scholar
  27. Nemitz W, Whaley T (1973) Varieties of implicative semi-lattices. II. Pac J Math 45:303–311MathSciNetCrossRefGoogle Scholar
  28. Rasiowa H (1974) An algebraic approach to non-classical logics. North-Holland Pub. Co., AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departament de FilosofiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departamento de MatemáticaFacultad de Ciencias Exactas (UNLP), and CONICETLa PlataArgentina

Personalised recommendations