Advertisement

Hierarchical granular hotspots detection

  • Ferdinando Di MartinoEmail author
  • Witold Pedrycz
  • Salvatore Sessa
Methodologies and Application
  • 11 Downloads

Abstract

We present a hierarchical model based on the extended fuzzy C-means (EFCM) clustering algorithm to develop a granular view of hotspots on a geographic map. The objective is to establish an overview of the spatial distribution of a phenomenon when the relevant data are partitioned into different datasets. The EFCM algorithm is applied to each dataset to detect local hotspots, represented as circles, on the map. The local hotspots constitute information granules at lower level of abstraction in the model. A weighted EFCM algorithm is then applied to a dataset formed by the centers of all the local hotspots to extract circular prototypes, defined as global hotspots, which constitute information granules at the higher level, and hence, they deliver a global overview of the spatial distribution of the phenomenon on the map. Two indices related to the essential criteria of the principle of justifiable granularity are used. The results demonstrate that the most justifiable overview is obtained by using the radius of the local hotspot as weight. Comparisons with a hierarchical model based on FCM algorithm show that our algorithm gives a better granular view of the phenomenon with respect to the latter.

Keywords

Hotspot EFCM wEFCM Information granule 

Notes

Acknowledgements

This research was performed under the auspices of GCNS-INDAM. No specific grant from funding agencies or economic supports in the public, commercial, or not-for-profit sectors was received during this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Anderson TK (2009) Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Anal. Preview 41(3):359–364.  https://doi.org/10.1016/j.aap.2008.12.014 CrossRefGoogle Scholar
  2. Chainey S, Ratcliffe J (2013) GIS and crime mapping (chapter 6), identifying crime hotspots. Wiley, Hoboken. ISBN: 10-470-86099-5Google Scholar
  3. Chainey S, Reid S, Stuart N (2002) When is a hotspot a hotspot? A procedure for creating statistically robust hotspot maps of crime. In: Kidner D, Higgs G, White S (eds) Innovations in GIS 9: socio-economic applications of geographic information science. Taylor and Francis, London, pp 21–36. ISBN: 978-0415279109CrossRefGoogle Scholar
  4. Di Martino F, Sessa S (2011) The extended fuzzy C-means algorithm for hotspots in spatiotemporal GIS. Exp Syst Appl 38(9):11829–11836.  https://doi.org/10.1016/j.eswa.2011.03.071 CrossRefGoogle Scholar
  5. Di Martino F, Sessa S, Barillari UES, Barillari MR (2014) Spatiotemporal hotspots and application on a disease analysis case via GIS. Soft Comput 18(12):2377–2384.  https://doi.org/10.1007/s0050001312117 CrossRefGoogle Scholar
  6. Di Martino F, Sessa S, Mele R, Barillari UES, Barillari MR (2016) WebGIS based on spatiotemporal hotspots: an application to oto-laryngo-pharyngeal diseases. Soft Comput 20:2134–2147.  https://doi.org/10.1007/s0050001516264 CrossRefGoogle Scholar
  7. Ding L, Chen K-L, Liu T, Cheng S-G, Wang X (2015) Spatial-temporal hotspot pattern analysis of provincial environmental pollution incidents and related regional sustainable management in China in the period 1995–2012. Sustainability 7:14385–14407.  https://doi.org/10.3390/su71014385 CrossRefGoogle Scholar
  8. Grubesic TH, MacK EA (2008) Spatiotemporal interaction of urban crime. J Quant Criminol 24(3):285–306.  https://doi.org/10.1007/s1094000890475 CrossRefGoogle Scholar
  9. Kaur R, Sehera SS (2014) Analyzing and displaying of crime hotspots using fuzzy mapping method. Int J Comput Appl 103(1):25–28.  https://doi.org/10.5120/180398914 Google Scholar
  10. Kaymak U, Setnes M (2002) Fuzzy clustering with volume prototype and adaptive cluster merging. IEEE Trans Fuzzy Syst 10(6):705–712.  https://doi.org/10.1109/TFUZZ.2002.805901 CrossRefGoogle Scholar
  11. Kriegel HP, Kröger P, Sander J, Zimek A (2011) Density-based clustering, WIRE’s. Data Min Knowl Discov 1(3):231–240.  https://doi.org/10.1002/widm.30 CrossRefGoogle Scholar
  12. Loia V, Parente D, Pedrycz W, Tomasiello S (2018) A granular functional network with delay: some dynamical properties and application to the sign prediction in social networks. Neurocomputing 321:61–71.  https://doi.org/10.1016/j.neucom.2018.08.047 CrossRefGoogle Scholar
  13. Pedrycz W, Homenda W (2013) Building the fundamentals of granular computing: a principle of justifiable granularity. Appl Soft Comput 13:4209–4218.  https://doi.org/10.1016/j.asoc.2013.06.017 CrossRefGoogle Scholar
  14. Pedrycz W, Al-Hmouz R, Balamash AA, Morfeq A (2015) Hierarchical granular clustering: an emergence of information granules of higher type and higher order. IEEE Trans Fuzzy Syst 23(6):2270–2283.  https://doi.org/10.1109/TFUZZ.2015.2417896 CrossRefGoogle Scholar
  15. Stopka TJ, Krawczyk C, Gradziel P, Geraghty EM (2014) Use of spatial epidemiology and hotspot analysis to target women eligible for prenatal women, infants, and children services. Ame J Public Health 104(1):183–189.  https://doi.org/10.2105/AJPH.2013.301769 CrossRefGoogle Scholar
  16. Stopka TJ, Goulart MA, Meyers DJ, Hutcheson M, Ton K, Onofrey S, Church D, Donahue A, Chui KKH (2017) Identifying and characterizing hepatitis C virus hotspots in Massachusetts: a spatial epidemiological approach. BMC Infect Dis 17:294–305.  https://doi.org/10.1186/s1287901724002 CrossRefGoogle Scholar
  17. Vadrevu KP, Csiszar I, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C (2013) Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE J Sel Top Appl Earth Obs Remote Sens 6(1):224–228.  https://doi.org/10.1109/JSTARS.2012.2210699 CrossRefGoogle Scholar
  18. Xia S, Liu Y, Ding X, Wang G, Yu H, Luo Y (2019) Granular ball computing classifiers for efficient, scalable and robust learning. Inf Sci 483:136–152.  https://doi.org/10.1016/j.ins.2019.01.010 MathSciNetCrossRefGoogle Scholar
  19. Yang X, Li T, Liu D, Fujita H (2019) Temporal-spatial composite sequential approach of three-way granular computing. Inf Sci 171:189.  https://doi.org/10.1016/j.ins.2019.02.048 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Architettura and Centro Interdipartimentale di Ricerca “A. Calza Bini”Università degli Studi di Napoli Federico IINaplesItaly
  2. 2.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations