Advertisement

Soft Computing

, Volume 23, Issue 24, pp 13477–13487 | Cite as

Fuzzy sliding mode control of servo control system based on variable speeding approach rate

  • Hao Huang
  • Md Zakirul Alam BhuiyanEmail author
  • Qunzhang TuEmail author
  • Chengming Jiang
  • Jinhong Xue
  • Pan Ming
  • Pei Li
Methodologies and Application
  • 79 Downloads

Abstract

In order to optimize the speed control performance of the permanent-magnet synchronous motor system with different disturbances and uncertainties, this paper proposes a fuzzy sliding mode variable structure control (fuzzy-SMC) strategy. First, a variable speed reaching rate is introduced to solve the deficiency of the exponential reaching rate widely used in conventional sliding mode variable structure control (SMC) strategy. Then, a fuzzy controller is designed to adjust the control parameters to overcome the control deviation and improve the dynamic performance of the system. Simulation and experimental results show that when the steady state is reached, the proposed fuzzy-SMC strategy has better response speed than the proportional integral differential strategy and the conventional SMC strategy. It has smaller speed fluctuation, is more robust, and effectively suppresses the chattering phenomenon.

Keywords

PMSM Fuzzy-SMC control Variable speed reaching law Chattering 

Notes

Acknowledgements

This work is supported in part by the National Key Research and Development Plan (2016YFC0802903) and National Natural Science Foundation of China under Grant Number (61671470).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. Gmez DJ, Rodrguez AL, Villar I et al (2016) Experimental validation of an enhanced permeance network model for embedded magnet synchronous machines. Electr Power Syst Res 140:836–845CrossRefGoogle Scholar
  2. Juang CF, Chang YC (2017) Data-driven interpretable fuzzy controller design through multi-objective genetic algorithm. In: IEEE international conference on systems. IEEE, pp 002403–002408Google Scholar
  3. Kang T, Kim MS, Lee SY et al (2017) Modeling and a simple multiple model adaptive control of PMSM drive system. J Power Electron 17(2):442–452CrossRefGoogle Scholar
  4. Kapoor N, Ohri J (2017) Sliding mode control (SMC) of robot manipulator via intelligent controllers. J Inst Eng 98:83–98Google Scholar
  5. Kim SK, Lee JS, Lee KB (2018) Robust speed control algorithm with disturbance observer for uncertain PMSM. Int J Electron 105(8):1300–1318CrossRefGoogle Scholar
  6. Lai CK, Shyu KK (2005) A novel motor drive design for incremental motion system via sliding-mode control method. IEEE Trans Ind Electron 52(2):499–507CrossRefGoogle Scholar
  7. Leu VQ, Choi HH, Jung JW (2012) Fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer. IEEE Trans Power Electron 27(3):1530–1539CrossRefGoogle Scholar
  8. Lim CS, Levi E, Jones M et al (2014) A comparative study of synchronous current control schemes based on FCS-MPC and PI-PWM for a two-motor three phase drive. IEEE Trans Ind Electron 61(8):38673878Google Scholar
  9. Lin S, Zhang W (2017) An adaptive sliding-mode observer with a tangent function-based PLL structure for position sensorless PMSM drives. Int J Electr Power Energy Syst 88:63–74CrossRefGoogle Scholar
  10. Ma H, Wu J, Xiong Z (2017) A novel exponential reaching rate of discrete-time sliding-mode control. IEEE Trans Ind Electron 64:3840–3850CrossRefGoogle Scholar
  11. Mahmoudi H, Aleenejad M, Ahmadi R (2017) Modulated model predictive control for a Z source based permanent magnet synchronous motor drive system. IEEE Trans Ind Electron 99:1Google Scholar
  12. Mozayan SM, Saad M, Vahedi H et al (2016) Sliding mode control of PMSG wind turbine based on enhanced exponential reaching rate. IEEE Trans Ind Electron 63(10):6148–6159CrossRefGoogle Scholar
  13. Oveisi A, Nestorovic T (2016) Robust observer-based adaptive fuzzy sliding mode controller. Mech Syst Signal Process 76:58–71CrossRefGoogle Scholar
  14. Pan Y, Meng JE, Sun T et al (2017) Adaptive fuzzy PD control with stable H tracking guarantee. Neurocomputing 237(C):71–78Google Scholar
  15. Qiao Z, Shi T, Wang Y, Yan Y, Xia C, He X (2013) New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor. IEEE Trans Ind Electron 60(2):710–719CrossRefGoogle Scholar
  16. Repecho V, Biel D, Arias A (2017) Fixed switching period discrete-time sliding mode current control of a PMSM. IEEE Trans Ind Electron 65(3):2039–2048CrossRefGoogle Scholar
  17. Sakunthala S, Kiranmayi R, Nagaraju P (2017) A study on fuzzy controller and neuro-fuzzy controller for speed control of PMSM motor. In: International conference on power, control, signals and instrumentation engineeringGoogle Scholar
  18. Shi HM, Yu ZJ (2013) Design of PMSM position servo system based on fuzzy adaptive PI control. Adv Mater Res 706–708(1):737–741CrossRefGoogle Scholar
  19. Song BK, An JH, Choi SB (2017) A new fuzzy sliding mode controller with a disturbance estimator for robust vibration control of a semi-active vehicle suspension system. Appl Sci 7(10):1053CrossRefGoogle Scholar
  20. Sun Y, Wu X, Bai L et al (2016) Finite-time synchronization control and parameter identification of uncertain permanent magnet synchronous motor. Neurocomputing 207(26):511518Google Scholar
  21. Utkin VI, Chang HC (2007) Sliding mode control on electro-mechanical systems. Math Probl Eng 8(4–5):451–473MathSciNetzbMATHGoogle Scholar
  22. Wang MS, Tsai TM, Sciubba E (2017) Sliding mode and neural network control of sensorless PMSM controlled system for power consumption and performance improvement. Energies 10(11):1780CrossRefGoogle Scholar
  23. Wang Y, Hao S, Karimi HR et al (2018) Dissipativity-Based fuzzy integral sliding mode control of continuous-time T-S fuzzy systems. IEEE Trans Fuzzy Syst 26(3):1164–1176CrossRefGoogle Scholar
  24. Wen S, Chen MZQ, Zeng Z et al (2017) Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach. IEEE Trans Syst Man Cybern Syst 47(1):24–32CrossRefGoogle Scholar
  25. Xiong L, Wang J, Mi X et al (2017) Fractional order sliding mode based direct power control of grid-connected DFIG. IEEE Trans Power Syst 99:1Google Scholar
  26. Zhang X, Li Z (2016) Sliding-mode observer-based mechanical parameter estimation for permanent magnet synchronous motor. IEEE Trans Power Electron 31(8):57325745Google Scholar
  27. Zhang Y (2015) Zhao YX (2015) A mixed variable speed reaching rate of sliding mode control for spacecraft tracking system. Math Probl Eng 3:1–10MathSciNetGoogle Scholar
  28. Zhang X, Sun L, Zhao K et al (2013) Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Trans Power Electron 28(28):1358–1365CrossRefGoogle Scholar
  29. Zhang X, Hou B, Mei Y (2017) Deadbeat predictive current control of permanent magnet synchronous motors with stator current and disturbance observer. IEEE Trans Power Electron 32(5):3818–3824CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Field Engineering CollegeArmy Engineering University of PLANanjingChina
  2. 2.Fordham UniversityNew YorkUSA

Personalised recommendations