Advertisement

Soft Computing

, Volume 23, Issue 16, pp 7045–7053 | Cite as

Image encryption scheme combining a modified Gerchberg–Saxton algorithm with hyper-chaotic system

  • Huiqing Huang
  • Shouzhi YangEmail author
  • Ruisong Ye
Methodologies and Application

Abstract

We propose a new image encryption algorithm based on a modified Gerchberg–Saxton algorithm and hyper-chaotic system. First, original image is encoded into a phase function by using the modified Gerchberg–Saxton algorithm, which is controlled by hyper-chaotic system. Then, Josephus traversing is employed to scramble the created phase function. Lastly, the scrambled result is confused and diffused by using hyper-chaotic system simultaneously. The numerical simulations verify the validity and reliability of the proposed scheme.

Keywords

Image encryption Gerchberg–Saxton algorithm Hyper-chaotic system Josephus traversing 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11071152, 11601188, 61403164), the Natural Science Foundation of Guangdong Province (Grant No. 2015A030313443).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdo AA, Lian S, Ismail IA et al (2013) A cryptosystem based on elementary cellular automata. Commun Nonlinear Sci Numer Simul 18(1):136–147MathSciNetzbMATHCrossRefGoogle Scholar
  2. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos 16(08):2129–2151MathSciNetzbMATHCrossRefGoogle Scholar
  3. Chen G, Mao Y, Chui CK (2004) A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21(3):749–761MathSciNetzbMATHCrossRefGoogle Scholar
  4. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21(15):2758–2769CrossRefGoogle Scholar
  5. Gallagher NC, Liu B (1973) Method for computing kinoforms that reduces image reconstruction error. Appl Opt 12(10):2328–2335CrossRefGoogle Scholar
  6. Gao T, Chen Z (2008) A new image encryption algorithm based on hyper-chaos. Phys Lett A 372(4):394–400zbMATHCrossRefGoogle Scholar
  7. Gao TG, Chen ZQ, Yuan ZZ et al (2006) A hyperchaos generated from chen’s system. Int J Mod Phys C 17(04):471–478zbMATHCrossRefGoogle Scholar
  8. Gaurav B, Jonathan W, Balasubramanian R (2013) Discrete fractional wavelet transform and its application to multiple encryption. Inf Sci 223:297–316MathSciNetzbMATHCrossRefGoogle Scholar
  9. Gerchberg RW, Saxton WO (1972) A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35:237–246Google Scholar
  10. Halbeisen L, Hungerbüher N (1997) The Josephus problem. J Theor Nr Bordx 9(2):303–318MathSciNetzbMATHCrossRefGoogle Scholar
  11. Hirsch PM, Jordan JA, Lesem LB (1971) Method of making an object dependent diffuser. US Patent 3,619,022Google Scholar
  12. Huang H, Yang S (2017) Colour image encryption based on logistic mapping and double random-phase encoding. IET Image Process 11:211–216CrossRefGoogle Scholar
  13. Jin X, Zhu SY, Xiao C, Sun HB, Xiaodong LI, Zhao G, Shiming GE (2017) 3d textured model encryption via 3d LU chaotic mapping. Sci China Inf Sci 60(12):122107CrossRefGoogle Scholar
  14. Li S, Zheng X (2002) Cryptanalysis of a chaotic image encryption method. In: IEEE international symposium on circuits and systems, 2002. ISCAS 2002, vol 2, IEEE, pp II–708Google Scholar
  15. Li C, Li S, Alvarez G et al (2007) Cryptanalysis of two chaotic encryption schemes based on circular bit shift and xor operations. Phys Lett A 369(1):23–30zbMATHCrossRefGoogle Scholar
  16. Liu H, Liu Y (2014) Cryptanalyzing an image encryption scheme based on hybrid chaotic system and cyclic elliptic curve. Opt Laser Technol 56:15–19CrossRefGoogle Scholar
  17. Mao Y, Chen G, Lian S (2004) A novel fast image encryption scheme based on 3D chaotic baker maps. Int J Bifurc Chaos 14(10):3613–3624MathSciNetzbMATHCrossRefGoogle Scholar
  18. Marion A (1991) An introduction to image processing. Chapman and Hall, LondonCrossRefGoogle Scholar
  19. Matthews R (1989) On the derivation of a “chaotic” encryption algorithm. Cryptologia 13(1):29–42MathSciNetCrossRefGoogle Scholar
  20. Mazloom S, Eftekhari-Moghadam AM (2009) Color image encryption based on coupled nonlinear chaotic map. Chaos Solitons Fractals 42:1745–1754zbMATHCrossRefGoogle Scholar
  21. Mirzaei O, Yaghoobi M, Irani H (2012) A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn 67(1):557–566MathSciNetCrossRefGoogle Scholar
  22. Pareek NK, Patidar V, Sud KK (2006) Image encryption using chaotic logistic map. Image Vis Comput 24(9):926–934CrossRefGoogle Scholar
  23. Pashakolaee PG, Shahhoseini HS, Mollajafari M (2017) Hyper-chaotic feeded GA (HFGA): a reversible optimization technique for robust and sensitive image encryption. Multimed Tools Appl 5:1–30Google Scholar
  24. Refregier P, Javidi B (1995) Optical image encryption based on input plane and fourier plane random encoding. Opt Lett 20(7):767–769CrossRefGoogle Scholar
  25. Saxton WO (1974) Computer techniques for image processing in electron microscopy. PhD thesis, University of CambridgeGoogle Scholar
  26. Situ GH, Zhang JJ (2004) A lensless optical security system based on computer-generated phase only masks. Opt Commun 232(1):115–122CrossRefGoogle Scholar
  27. Socek D, Li S, Spyros SM et al (2005) Enhanced 1-D chaotic key-based algorithm for image encryption. In: First international conference on security and privacy for emerging areas in communications networks (SECURECOMM’05), IEEE, pp 406–407Google Scholar
  28. Tang ZJ, Wang F, Zhang XQ (2017) Image encryption based on random projection partition and chaotic system. Kluwer, DordrechtCrossRefGoogle Scholar
  29. Tao R, Xin Y, Wang Y (2007) Double image encryption based on random phase encoding in the fractional fourier domain. Opt Express 15(24):16067–16079CrossRefGoogle Scholar
  30. Wang XL (2014) A novel color image encryption algorithm based on dna sequence operation and hyper-chaotic system. J Syst Softw 85(2):290–299Google Scholar
  31. Wang QZ, Wei MY, Chen XM, Miao Z (2017) Joint encryption and compression of 3d images based on tensor compressive sensing with non-autonomous 3d chaotic system. Multimed Tools Appl 9:1–20Google Scholar
  32. Xiang T, Liao X, Tang G et al (2006) A novel block cryptosystem based on iterating a chaotic map. Phys Lett A 349(1–4):109–115zbMATHCrossRefGoogle Scholar
  33. Yanchuk S, Kapitaniak T (2001) Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems. Phys Rev E 64:056235CrossRefGoogle Scholar
  34. Ye G, Wong KW (2013) An image encryption scheme based on time-delay and hyperchaotic system. Nonlinear Dyn 71(1–2):259–267MathSciNetCrossRefGoogle Scholar
  35. Zhou N, Pan S, Cheng S (2016) Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing. Opt Laser Technol 82:121–133CrossRefGoogle Scholar
  36. Zhu C, Liao C, Deng X (2013) Breaking and improving an image encryption scheme based on total shuffling scheme. Nonlinear Dyn 71(1–2):25–34MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsShantou UniversityShantouPeople’s Republic of China
  2. 2.School of MathematicsJiaying UniversityMeizhouPeople’s Republic of China

Personalised recommendations