Soft Computing

, Volume 22, Issue 22, pp 7519–7537 | Cite as

Morphisms on \({ EMV}\)-algebras and their applications

  • Anatolij Dvurečenskij
  • Omid ZahiriEmail author


For a new class of algebras, called \({ EMV}\)-algebras, every idempotent element a determines an \({ MV}\)-algebra which is important for the structure of the \({ EMV}\)-algebra. Therefore, instead of standard homomorphisms of \({ EMV}\)-algebras, we introduce \({ EMV}\)-morphisms as a family of \({ MV}\)-homomorphisms from \({ MV}\)-algebras [0, a] into other ones. \({ EMV}\)-morphisms enable us to study categories of \({ EMV}\)-algebras where objects are \({ EMV}\)-algebras and morphisms are special classes of \({ EMV}\)-morphisms. The category is closed under product. In addition, we define free \({ EMV}\)-algebras on a set X with respect to \({ EMV}\)-morphisms. If X is finite, then a free \({ EMV}\)-algebra on X is termwise equivalent to the free \({ MV}\)-algebra on X. For an infinite set X, the same is true introducing a so-called weakly free \({ EMV}\)-algebra.


\({ MV}\)-algebra \({ EMV}\)-algebra \({ EMV}\)-homomorphism \({ EMV}\)-morphism Standard \({ EMV}\)-morphism Free \({ EMV}\)-algebra Weakly free \({ EMV}\)-algebra Categories of \({ EMV}\)-algebras 



AD is thankful for the support by the Slovak Research and Development Agency under the Contract No. APVV-16-0073 and by Grants VEGA No. 2/0069/16 SAV and GAČR 15-15286S.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Human participants

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Blyth TS (2005) Lattice and ordered algebraic structures. Springer, LondonzbMATHGoogle Scholar
  2. Burris S, Sankappanavar HP (1981) A course in universal algebra. Springer, New YorkCrossRefGoogle Scholar
  3. Chang CC (1958) Algebraic analysis of many valued logics. Trans Am Math Soc 88:467–490MathSciNetCrossRefGoogle Scholar
  4. Cignoli R, D’Ottaviano IML, Mundici D (2000) Algebraic foundations of many-valued reasoning. Springer, DordrechtCrossRefGoogle Scholar
  5. Di Nola A, Lettieri A (1999) Equational characterization of all varieties of MV-algebras. J Algebra 221:463–474MathSciNetCrossRefGoogle Scholar
  6. Di Nola A, Russo C (2015) The semiring-theoretic approach to MV-algebras: a survey. Fuzzy Sets Syst 281:134–154MathSciNetCrossRefGoogle Scholar
  7. Dvurečenskij A (2002) Pseudo MV-algebras are intervals in \(\ell \)-groups. J Aust Math Soc 72:427–445MathSciNetCrossRefGoogle Scholar
  8. Dvurečenskij A, Pulmannová S (2000) New trends in quantum structures. Kluwer Academic Publ, DordrechtCrossRefGoogle Scholar
  9. Dvurečenskij A, Zahiri O (2017a) On \(EMV\)-algebras.
  10. Dvurečenskij A, Zahiri O (2017b) The Loomis–Sikorski theorem for \(EMV\)-algebras. J Aust Math Soc (to appear).
  11. Galatos N, Tsinakis C (2005) Generalized MV-algebras. J Algebra 283:254–291MathSciNetCrossRefGoogle Scholar
  12. Georgescu G, Iorgulescu A (2001) Pseudo \(MV\)-algebras. Mult Valued Log 6:193–215MathSciNetzbMATHGoogle Scholar
  13. Luxemburg WAJ, Zaanen AC (1971) Riesz spaces, vol 1. North-Holland Publishers Co., AmsterdamzbMATHGoogle Scholar
  14. Mac Lane S (1971) Categories for the working mathematician. Springer, New YorkCrossRefGoogle Scholar
  15. Mundici D (1986) Interpretation of AF \(C^*\)-algebras in Łukasiewicz sentential calculus. J Funct Anal 65:15–63MathSciNetCrossRefGoogle Scholar
  16. Mundici D (2011) Advanced Łukasiewicz calculus and MV-algebras. Springer, DordrechtCrossRefGoogle Scholar
  17. Shang Y, Lu R (2007) Semirings and pseudo MV algebras. Soft Comput 11:847–853CrossRefGoogle Scholar
  18. Stone MH (1937) Applications of the theory of Boolean rings to general topology. Trans Am Math Soc 41:375–481MathSciNetCrossRefGoogle Scholar
  19. Stone MH (1938) Topological representation of distributive lattices and Brouwerian logics. Časopis pro pěstování matematiky a fysiky 67:1–25zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Depart. Algebra Geom.Palacký Univer.OlomoucCzech Republic
  3. 3.University of Applied Science and TechnologyTehranIran

Personalised recommendations