Advertisement

Biclustering with a quantum annealer

  • Lorenzo Bottarelli
  • Manuele Bicego
  • Matteo Denitto
  • Alessandra Di Pierro
  • Alessandro Farinelli
  • Riccardo Mengoni
Methodologies and Application

Abstract

Several problem in Artificial Intelligence and Pattern Recognition are computationally intractable due to their inherent complexity and the exponential size of the solution space. One example of such problems is biclustering, a specific clustering problem where rows and columns of a data-matrix must be clustered simultaneously. Quantum information processing could provide a viable alternative to combat such a complexity. A notable work in this direction is the recent development of the D-Wave computer, whose processor has been designed to the purpose of solving Quadratic Unconstrained Binary Optimization (QUBO) problems. In this paper, we investigate the use of quantum annealing by providing the first QUBO model for biclustering and a theoretical analysis of its properties (correctness and complexity). We empirically evaluated the accuracy of the model on a synthetic data-set and then performed experiments on a D-Wave machine discussing its practical applicability and embedding properties.

Keywords

Quantum annealing D-Wave Biclustering 

Notes

Acknowledgements

We acknowledge the support of the Universities Space Research Association (USRA) Quantum Artificial Intelligence Laboratory Research Opportunity program. We would like to thank in particular Davide Venturelli for his very helpful comments on a first draft of this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ayadi W, Elloumi M, Hao J (2012) BiMine+: an efficient algorithm for discovering relevant biclusters of DNA microarray data. Knowl Based Syst 35:224–234CrossRefGoogle Scholar
  2. Badea L (2009) Generalized clustergrams for overlapping biclusters. In: Proceedings of the 21st international joint conference on artificial intelligence. IJCAI’09. Morgan Kaufmann Publishers Inc., San Francisco, pp 1383–1388Google Scholar
  3. Ben-Dor A, Chor B, Karp R, Yakhini Z (2003) Discovering local structure in gene expression data: the order-preserving submatrix problem. J Comput Biol 10(3–4):373–384CrossRefGoogle Scholar
  4. Bian Z, Chudak F, Macready WG, Rose G (2010) The Ising model: teaching an old problem new tricks. http://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf
  5. Bian Z, Chudak F, Israel R, Lackey B, Macready WG, Roy A (2014) Discrete optimization using quantum annealing on sparse Ising models. Front Phys 2:56CrossRefGoogle Scholar
  6. Bicego M, Lovato P, Ferrarini A, Delledonne M (2010) Biclustering of expression microarray data with topic models. In: International conference on pattern recognition (ICPR2010), pp 2728–2731Google Scholar
  7. Boothby T, King AD, Roy A (2016) Fast clique minor generation in chimera qubit connectivity graphs. Quantum Inf Process 15(1):495–508MathSciNetCrossRefMATHGoogle Scholar
  8. Cai J, Macready WG, Roy A (2014) A practical heuristic for finding graph minors. ArXiv e-prints arXiv:1406.2741
  9. Cheng Y, Church G (2000) Biclustering of expression data. In: Proceedings eighth international conference on intelligent systems for molecular biology (ISMB00), pp 93–103Google Scholar
  10. Dahl ED (2013) Programming with D-Wave: map coloring problem. http://www.dwavesys.com/sites/default/files/MapColoringWP2.pdf
  11. Denchev VS, Boixo S, Isakov SV, Ding N, Babbush R, Smelyanskiy V, Martinis J, Neven H (2016) What is the computational value of finite-range tunneling? Phys Rev X 6(3):031015Google Scholar
  12. Denitto M, Farinelli A, Franco G, Bicego M (2014) A binary factor graph model for biclustering. In: Frnti P, Brown G, Loog M, Escolano F, Pelillo M (eds) Structural, syntactic, and statistical pattern recognition, vol 8621. Lecture notes in computer science. Springer, Berlin, pp 394–403Google Scholar
  13. Denitto M, Farinelli A, Figueiredo MA, Bicego M (2017) A biclustering approach based on factor graphs and the max-sum algorithm. Pattern Recognit 62:114–124CrossRefGoogle Scholar
  14. Dhillon I (2001) Coclustering documents and words using bipartite spectral graph partitioning. In: Proceedings of international conference on knowledge discovery and data mining, pp 269–274Google Scholar
  15. Dolnicar S, Kaiser S, Lazarevski K, Leisch F (2012) Biclustering: overcoming data dimensionality problems in market segmentation. J Travel Res 51(1, (1)):41–49CrossRefGoogle Scholar
  16. Farhi E, Goldstone J, Gutmann S (2002) Quantum adiabatic evolution algorithms versus simulated annealing. Eprint arXiv:quant-ph/0201031
  17. Finnila AB, Gomez MA, Sebenik C, Stenson C, Doll JD (1994) Quantum annealing: a new method for minimizing multidimensional functions. Chem Phys Lett 219:343–348CrossRefGoogle Scholar
  18. Flores JL, Inza I, Larranaga P, Calvo B (2013) A new measure for gene expression biclustering based on non-parametric correlation. Comput Methods Programs Biomed 112(3):367–397CrossRefGoogle Scholar
  19. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976MathSciNetCrossRefMATHGoogle Scholar
  20. Henriques R, Madeira SC (2014) BicPAM: pattern-based biclustering for biomedical data analysis. Algorithms Mol Biol 9(1):27CrossRefGoogle Scholar
  21. Henriques R, Madeira SC (2018) BSig: evaluating the statistical significance of biclustering solutions. Data Min Knowl Disc 32(1):124–161.  https://doi.org/10.1007/s10618-017-0521-2 MathSciNetCrossRefGoogle Scholar
  22. Henriques R, Antunes C, Madeira SC (2015) A structured view on pattern mining-based biclustering. Pattern Recognit 48(12):3941–3958CrossRefGoogle Scholar
  23. Kadowaki T, Nishimori H (1998) Quantum annealing in the transverse Ising model. Phys Rev E 58(5):5355–5363CrossRefGoogle Scholar
  24. King J, Yarkoni S, Raymond J, Ozfidan I, King AD, Nevisi MM, Hilton JP, McGeoch CC (2017) Quantum annealing amid local ruggedness and global frustration. ArXiv e-prints arXiv:1701.04579
  25. Kochenberger G, Hao J, Glover F, Lewis M, Lü Z, Wang H, Wang Y (2014) The unconstrained binary quadratic programming problem: a survey. J Comb Optim 28(1):58–81MathSciNetCrossRefMATHGoogle Scholar
  26. Kurihara K, Tanaka S, Miyashita S (2009) Quantum annealing for clustering. In: Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. UAI ’09. AUAI Press, Arlington, pp 321–328Google Scholar
  27. Madeira S, Oliveira A (2004) Biclustering algorithms for biological data analysis: a survey. IEEE Trans Comput Biol Bioinform 1:24–44CrossRefGoogle Scholar
  28. Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello C (2014) Survey of multiobjective evolutionary algorithms for data mining: part II. IEEE Trans Evolut Comput 18(1):20–35CrossRefGoogle Scholar
  29. Neven H, Rose G, Macready WG (2008) Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization, ArXiv e-prints arXiv:0804.4457
  30. Oghabian A, Kilpinen S, Hautaniemi S, Czeizler E (2014) Biclustering methods: biological relevance and application in gene expression analysis. PLoS ONE 9(3):e90,801CrossRefGoogle Scholar
  31. O’Gorman B, Babbush R, Perdomo-Ortiz A, Aspuru-Guzik A, Smelyanskiy V (2015a) Bayesian network structure learning using quantum annealing. Eur Phys J Spec Top 224(1):163–188CrossRefGoogle Scholar
  32. O’Gorman B, Rieffel E, Do M, Venturelli D, Frank J (2015b) Compiling planning into quantum optimization problems: a comparative study. In: Proceedings of the workshop on constraint satisfaction techniques for planning and scheduling problems (COPLAS-15), pp 11–20Google Scholar
  33. Perdomo-Ortiz A, Fluegemann J, Biswas R, Smelyanskiy VN (2015) A performance estimator for quantum annealers: Gauge selection and parameter setting. ArXiv e-prints arXiv:1503.01083
  34. Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9):1122–1129CrossRefGoogle Scholar
  35. Pudenz KL (2016) Parameter setting for quantum annealers. In: 2016 IEEE high performance extreme computing conference (HPEC), pp 1–6Google Scholar
  36. Ray P, Chakrabarti BK, Chakrabarti A (1989) Sherrington–Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys Rev B 39:11,828–11,832CrossRefGoogle Scholar
  37. Rieffel EG, Venturelli D, O’Gorman B, Do MB, Prystay EM, Smelyanskiy VN (2015) A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf Process 14:1–36 arXiv:1407.2887 CrossRefMATHGoogle Scholar
  38. Santoro GE, Tosatti E (2006) Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J Phys A Math Gen 39(36):R393–R431MathSciNetCrossRefMATHGoogle Scholar
  39. Truong DT, Battiti R, Brunato M (2013) A repeated local search algorithm for biclustering of gene expression data. In: Hancock E, Pelillo M (eds) Similarity-based pattern recognition. Springer, Heidelberg, pp 281–296.  https://doi.org/10.1007/978-3-642-39140-8_19
  40. Tu K, Ouyang X, Han D, Honavar V (2011) Exemplar-based robust coherent biclustering. In: SDM, SIAM, pp 884–895Google Scholar
  41. Venturelli D, Mandrà S, Knysh S, O’Gorman B, Biswas R, Smelyanskiy V (2015) Quantum optimization of fully connected spin glasses. Phys Rev X 5(031):040Google Scholar
  42. Yang J, Wang H, Wang W, Yu PS (2005) An improved biclustering method for analyzing gene expression profiles. Int J Artif Intell Tools 14(05):771–789CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations