Advertisement

Soft Computing

, Volume 23, Issue 2, pp 451–481 | Cite as

Damping vibration-based IGMM optimization algorithm: fast and significant

  • Mohammad Reza GhasemiEmail author
  • Hesam Varaee
Methodologies and Application
  • 134 Downloads

Abstract

The ideal gas molecular movement (IGMM) algorithm has been introduced by the authors recently. Detailed studies on its behaviors uncover the fact that the gas molecules also experience a local self-vibration as they move. A comprehensive study was carried out here to introduce the molecular vibration thoroughly as a damping phenomenon supporting convergence rationally with a hindering behavior as molecules travel toward the global best. Thus, a new algorithm containing a molecular operand on vibrational effect (MOVE) was introduced and three different functions were employed to simulate molecular vibrations and pursue investigation. They include simple harmonic, driven harmonic and damped harmonic motions. A number of optimization problems were attempted including a set of unconstrained problems, 23 benchmark functions consisting of unimodal, multimodal and multimodal functions with fix dimensions, and also three well-known constrained engineering problems. Moreover, in a statistically significant way, Wilcoxon’s rank-sum nonparametric statistical test was carried out at the 5% significance level. Overall, the damped harmonic motion function as a molecular vibration simulator supported the optimization procedure best among the other two vibrational functions and other algorithms involved in the research. It showed a relatively better act, causing a faster escalation in the convergence throughout the optimization process. The results intensely show that the MOVE operand significantly boosts the performance of the IGMM and one could certify the significance of VIGMM, proposed in the present study, over some other metaheuristic optimization algorithms.

Keywords

Vibration-based ideal gas molecular movement Damped harmonic motion Convergence rate Collision Effective velocity 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahmadi-Nedushan B (2012) An optimized instance based learning algorithm for estimation of compressive strength of concrete. Eng Appl Artif Intell 25:1073–1081. doi: 10.1016/j.engappai.2012.01.012 CrossRefGoogle Scholar
  2. Ahmadi-Nedushan B, Varaee H (2009) Optimal design of reinforced concrete retaining walls using a swarm intelligence technique. In: The first international conference on soft computing technology in civil. structural and environmental engineering. UK, pp 1–12Google Scholar
  3. Akhtar S, Tai K, Ray T (2002) A socio-behavioural simulation model for engineering design optimization. Eng Optim 34:341–354. doi: 10.1080/03052150212723 CrossRefGoogle Scholar
  4. Al-Betar MA, Awadallah MA, Khader AT, Abdalkareem ZA (2015) Island-based harmony search for optimization problems. Expert Syst Appl 42:2026–2035. doi: 10.1016/j.eswa.2014.10.008 CrossRefGoogle Scholar
  5. Aljarah I, Faris H, Mirjalili S (2016) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput. doi: 10.1007/s00500-016-2442-1 Google Scholar
  6. Borgnakke C, Sonntag RE (2009) Fundamentals of thermodynamics, 7th edn. Wiley, Newyork. ISBN:978-0-470-17157-8Google Scholar
  7. Coello CAC, Becerra RL (2004) Efficient evolutionary optimization through the use of a cultural algorithm. Eng Optim 36:219–236CrossRefGoogle Scholar
  8. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18. doi: 10.1016/j.swevo.2011.02.002 CrossRefGoogle Scholar
  9. Dizangian B, Ghasemi MR (2015) Ranked-based sensitivity analysis for size optimization of structures. J Mech Des 137:121402. doi: 10.1115/1.4031295 CrossRefGoogle Scholar
  10. Ebrahimi A, Khamehchi E (2016) Sperm whale algorithm: an effective metaheuristic algorithm for production optimization problems. J Nat Gas Sci Eng 29:211–222. doi: 10.1016/j.jngse.2016.01.001 CrossRefGoogle Scholar
  11. Gandomi AH, Yang X (2011) Benchmark problems in structural optimization. Comput Optim Methods Algorithms Stud Comput Intell 356:259–281. doi: 10.1007/978-3-642-20859-1_12 MathSciNetzbMATHGoogle Scholar
  12. Georgiev A, Spassova E, Assa J, Danev G (2010) Preparation of polyimide thin films by vapour deposition and solid state reactions. In: Hashim AA (ed) Polymer thin films. InTech, Rijeka, Croatia. ISBN:978-953-307-059-9Google Scholar
  13. Ghasemi MR, Ghiasi R, Varaee H (2017a) Probability-based damage detection of structures using surrogate model and enhanced ideal gas molecular movement algorithm. In: Proceedings of 12th world congress on structural and multidisciplinary optimisation (WCSMO12). Braunschweig, Germany,Google Scholar
  14. Ghasemi MR, Ghiasi R, Varaee H (2017b) Probability-based damage detection of structures using model updating with enhanced ideal gas molecular movement algorithm. In: ICCBE 2017: 19th International conference on civil and building engineering, Copenhagen, Denmark, United KingdomGoogle Scholar
  15. Ghasemi MR, Varaee H (2016) A fast multi-objective optimization using an efficient ideal gas molecular movement algorithm. Eng Comput. doi: 10.1007/s00366-016-0485-7 Google Scholar
  16. Ghasemi MR, Varaee H (2017a) Enhanced IGMM optimization algorithm based on vibration for numerical and engineering problems. Eng Comput. doi: 10.1007/s00366-017-0523-0 Google Scholar
  17. Ghasemi MR, Varaee H (2017b) Modified ideal gas molecular movement algorithm based on quantum behavior. In: 12th world congress on structural and multidisciplinary optimisation (WCSMO12). Braunschweig, GermanyGoogle Scholar
  18. Halliday D, Resnick R, Walker J et al (2011) Principles of physics. Wiley, HobokenzbMATHGoogle Scholar
  19. Hossein A, Yang GX, Gandomi AH et al (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35. doi: 10.1007/s00366-011-0241-y CrossRefGoogle Scholar
  20. Ilich P-P (2010) Selected problems in physical chemistry: strategies and interpretations. Springer, BerlinCrossRefGoogle Scholar
  21. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Franklin Inst 346:328–348. doi: 10.1016/j.jfranklin.2008.11.003 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Kaveh A, Mahdavi VRR (2014) Colliding bodies optimization method for optimum design of truss structures with continuous variables. Adv Eng Softw 70:1–12. doi: 10.1016/j.advengsoft.2014.01.002 CrossRefGoogle Scholar
  23. Kaveh A, Bakhshpoori T (2016) Water evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167:69–85. doi: 10.1016/j.compstruc.2016.01.008 CrossRefGoogle Scholar
  24. Ku KJ, Rao SS, Chen L (1998) Taguchi-aided search method for design optimization of engineering systems. Eng Optim 30:1–23. doi: 10.1080/03052159808941235 CrossRefGoogle Scholar
  25. Laurendeau NM (2005) Statistical thermodynamics fundamentals and applications. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  26. Li Z, Wang W, Yan Y, Li Z (2015) PS-ABC: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Elsevier, AmsterdamGoogle Scholar
  27. Liang JJ, Qu BY, Suganthan PN, Chen Q (2015) Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. In: Technical report 201411A. Computational Intelligence Laboratory, SingaporeGoogle Scholar
  28. Mezura-Montes E, Coello CAC, Landa-Becerra R (2003) Engineering optimization using simple evolutionary algorithm. In: 2003 proceedings 15th IEEE international conference on tools with artificial intelligence, pp 149–156Google Scholar
  29. Mirjalili S, Zaiton S, Hashim M, et al (2010) A new hybrid PSOGSA algorithm for function optimization. In: Proceedings ICCIA 2010 - 2010 international conference on computer and applications. pp 374–377. doi: 10.1109/ICCIA.2010.6141614
  30. Mousavirad SJ, Ebrahimpour-komleh H (2017) Human mental search: a new population-based metaheuristic optimization algorithm. Appl Intell. doi: 10.1007/s10489-017-0903-6
  31. Rao SS (2009) Engineering optimization: theory and practice. Wiley, HobokenCrossRefGoogle Scholar
  32. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (Ny) 179:2232–2248. doi: 10.1016/j.ins.2009.03.004 CrossRefzbMATHGoogle Scholar
  33. Ravindran A, Reklaitis GV, Ragsdell KM, Reklaitis GV (2006) Engineering optimization: methods and applications. Wiley, HobokenCrossRefGoogle Scholar
  34. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33:735–748. doi: 10.1080/03052150108940941 CrossRefGoogle Scholar
  35. Sharma TK, Pant M (2016) Shuffled artificial bee colony algorithm. Soft Comput. doi: 10.1007/s00500-016-2166-2 Google Scholar
  36. Sonntag RE, Borgnakke C, Van Wylen GJ, Van Wyk S (1998) Fundamentals of thermodynamics. Wiley, New YorkGoogle Scholar
  37. Varaee H, Ahmadi-Nedushan B (2011) Minimum cost design of concrete slabs using particle swarm optimization with time varying acceleration coefficients. World Appl Sci J 13:2484–2494Google Scholar
  38. Varaee H, Ghasemi MR (2017) Engineering optimization based on ideal gas molecular movement algorithm. Eng Comput 33:71–93. doi: 10.1007/s00366-016-0457-y CrossRefGoogle Scholar
  39. Wang G-G, Deb S, Coelho LSDS (2015a) Earthworm optimization algorithm: a bioinspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspired Comput. doi: 10.1504/IJBIC.2015.10004283
  40. Wang G-G, Deb S, Cui Z (2015b) Monarch butterfly optimization. Neural Comput Appl. doi: 10.1007/s00521-015-1923-y Google Scholar
  41. Wang G-G, Gandomi AH, Zhao X, Chu HCE (2014) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20:273–285. doi: 10.1007/s00500-014-1502-7 CrossRefGoogle Scholar
  42. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1:80–83. doi: 10.2307/3001968 CrossRefGoogle Scholar
  43. Wilson EB, Decius JC, Cross PC (2012) Molecular vibrations: the theory of infrared and Raman vibrational spectra. Courier Corporation, North ChelmsfordGoogle Scholar
  44. Wolpert DH, Macready WG, Nna D et al (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. doi: 10.1109/4235.585893 CrossRefGoogle Scholar
  45. Xu X, Rong H, Trovati M, et al (2016) CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems. Soft Comput 1–13. doi: 10.1007/s00500-016-2383-8
  46. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bio Inspir Comput 2(2):78–84. doi: 10.1504/IJBIC.2010.032124 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of Sistan and BaluchestanZahedanIran
  2. 2.Ale-Taha Institute of Higher EducationTehranIran

Personalised recommendations