Advertisement

Soft Computing

, Volume 22, Issue 24, pp 8077–8095 | Cite as

Temporal Sleuth Machine with decision tree for temporal classification

  • Shih Yin Ooi
  • Shing Chiang Tan
  • Wooi Ping Cheah
Methodologies and Application
  • 94 Downloads

Abstract

Temporal data classification is an extension field of data classification, where the observed datasets are temporally related across sequential domain and time domain. In this work, an inductive learning temporal data classification, namely Temporal Sleuth Machine (TSM), is proposed. Building on the latest release of C4.5 decision tree (C4.8), we consider its limitations in handling a large number of attributes and inherited information gain ratio problem. Fuzzy cognitive maps is incorporated in the TSM initial learning mechanism to adaptively harness the temporal relations of TSM rules. These extracted temporal values are used to revisit the information gain ratio and revise the number of TSM rules during the second learning mechanism, hence, yielding a stronger learner. Tested on 11 UCI Repository sequential datasets from diverse domains, TSM demonstrates its robustness by achieving an average classification accuracy of more than 95% in all datasets.

Keywords

C4.5 Temporal decision tree Temporal data classification Hybrid model 

Notes

Acknowledgements

This research work was supported by two Fundamental Research Grant Schemes (FRGS) under the Ministry of Education and Multimedia University, Malaysia (Project ID: MMUE/130121 and MMUE/160029).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alcaraz R, Hornero F, Rieta JJ (2013) Dynamic time warping applied to estimate atrial fibrillation temporal organization from the surface electrocardiogram. Med Eng Phys 35(9):1341–1348. doi: 10.1016/j.medengphy.2013.03.004 CrossRefGoogle Scholar
  2. Altun K, Barshan B, Tunçel O (2010) Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn 43(10):3605–3620. doi: 10.1016/j.patcog.2010.04.019 CrossRefzbMATHGoogle Scholar
  3. Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2013) Energy efficient smartphone-based activity recognition using fixed-point arithmetic. Special session in ambient assisted living: home care. J Univ Comput Sci 19(9):1295–1314Google Scholar
  4. Antunes CM, Oliveira AL (2001) Temporal data mining: an overview. In: KDD workshop on temporal data mining, pp 1–13Google Scholar
  5. Bansal NK, Feng X, Zhang W, Wei W, Zhao Y (2012) Modeling temporal pattern and event detection using hidden markov model with application to a sludge bulking data. Procedia Comput Sci 12:218–223. doi: 10.1016/j.procs.2012.09.059 CrossRefGoogle Scholar
  6. Basse RM, Charif O, Bódis K (2016) Spatial and temporal dimensions of land use change in cross border region of Luxembourg. Development of a hybrid approach integrating GIS, cellular automata and decision learning tree models. Appl Geogr 67:94–108. doi: 10.1016/j.apgeog.2015.12.001 CrossRefGoogle Scholar
  7. Boyacioglu MA, Avci D (2010) An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the istanbul stock exchange. Expert Syst Appl 37(12):7908–7912. doi: 10.1016/j.eswa.2010.04.045 CrossRefGoogle Scholar
  8. Casale P, Pujol O, Radeva P (2012) Personalization and user verification in wearable systems using biometric walking patterns. Pers Ubiquit Comput 16(5):563–580. doi: 10.1007/s00779-011-0415-z CrossRefGoogle Scholar
  9. Chen Y, Mazlack LJ, Minai AA, Lu LJ (2015) Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms with application to gene regulatory network reconstruction. Appl Soft Comput 37:667–679. doi: 10.1016/j.asoc.2015.08.039 CrossRefGoogle Scholar
  10. Chu H-J, Lin C-Y, Liau C-J, Kuo Y-M (2012) Identifying controlling factors of ground-level ozone levels over southwestern Taiwan using a decision tree. Atmos Environ 60:142–152. doi: 10.1016/j.atmosenv.2012.06.032 CrossRefGoogle Scholar
  11. Deng H, Runger G, Tuv E (2011) Bias of importance measures for multi-valued attributes and solutions. In: Proceedings of the 21st international conference on artificial neural networks (ICANN2011), LNCS 6792, vol 2, pp 293–300Google Scholar
  12. Durão RM, Mendes MT, João Pereira M (2016) Forecasting O3 levels in industrial area surroundings up to 24 h in advance, combining classification trees and MLP models. Atmos Pollut Res 7(6):961–970. doi: 10.1016/j.apr.2016.05.008 CrossRefGoogle Scholar
  13. Elman J (1990) Finding structure in time. Cognit Sci 14(2):179–211. doi: 10.1016/0364-0213(90)90002-E CrossRefGoogle Scholar
  14. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874. doi: 10.1016/j.patrec.2005.10.010 MathSciNetCrossRefGoogle Scholar
  15. Froelich W, Salmeron JL (2014) Evolutionary learning of fuzzy grey cognitive maps for the forecasting of multivariate, interval-valued time series. Int J Approx Reason 55(6):1319–1335. doi: 10.1016/j.ijar.2014.02.006 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Giabbanelli PJ, Torsney-Weir T, Mago VK (2012) A fuzzy cognitive map of the psychosocial determinants of obesity. Appl Soft Comput 12(12):3711–3724. doi: 10.1016/j.asoc.2012.02.006 CrossRefGoogle Scholar
  17. Groumpos P, Anninou P, Groumpos PV (2015) A new mathematical modelling approach for viticulture and winemaking using fuzzy cognitive maps. IFAC-PapersOnLine 48(24):15–20. doi: 10.1016/j.ifacol.2015.12.049 CrossRefGoogle Scholar
  18. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18CrossRefGoogle Scholar
  19. Hernandez-Leal P, Gonzalez J, Morales EF, Enrique Sucar L (2013) Learning temporal nodes Bayesian networks. Int J Approx Reason 54(8):956–977. doi: 10.1016/j.ijar.2013.02.011 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Jeong KS, Kim DK, Jung JM, Kim MC, Joo GJ (2008) Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics. Ecol Model 211(3–4):292–300. doi: 10.1016/j.ecolmodel.2007.09.029 CrossRefGoogle Scholar
  21. Jung S, Qin X, Oh C (2016) Improving strategic policies for pedestrian safety enhancement using classification tree modeling. Transp Res Part A Policy Pract 85:53–64. doi: 10.1016/j.tra.2016.01.002 CrossRefGoogle Scholar
  22. Kadous M (2002) Temporal classification: extending the classification paradigm to multivariate time series. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Temporal+Classification+:+Extending+the+Classification+Paradigm+to+Multivariate+Time+Series#0
  23. Karimi K, Hamilton HJ (2001) Temporal rules and temporal rules and temporal decision trees: a C4.5 approach. Technical Report CS-2001-02. Retrieved from https://pdfs.semanticscholar.org/872/88d6cf1c84dc819219d647bdc5708dc53248.pdf
  24. Kasabov N, Capecci E (2015) Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inf Sci 294:565–575. doi: 10.1016/j.ins.2014.06.028 MathSciNetCrossRefGoogle Scholar
  25. Ko MH, West G, Venkatesh S, Kumar M (2008) Using dynamic time warping for online temporal fusion in multisensor systems. Inf Fus 9:370–388. doi: 10.1016/j.inffus.2006.08.002 CrossRefGoogle Scholar
  26. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence (IJCAI), vol 5, pp 1137–1143. Morgan Kaufmann, San MateoGoogle Scholar
  27. Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24:65–75CrossRefGoogle Scholar
  28. Lesh N, Zaki MJ, Ogihara M (1999) Mining features for sequence classification. In: KDD ’99 proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining, pp 342–346Google Scholar
  29. Liu B, Ma Y, Wong CK, Yu PS (2003) Scoring the data using association rules. Appl Intell 18(2):119–135CrossRefGoogle Scholar
  30. Ooi SY, Tan SC, Cheah WP (2014a) LNCS 8836—anomaly based intrusion detection through temporal classification. Lecture notes in computer science (LNCS), 21st international conference on neural information processing (ICONIP 2014), pp 612–619Google Scholar
  31. Ooi SY, Tan SC, Cheah WP (2014b) Temporal decision tree and interpretable temporal rules: J48 and fuzzy cognitive maps approach. Aust J Intell Inf Process Syst 14(1). Retrieved from http://cs.anu.edu.au/ojs/index.php/ajiips
  32. Orphanou K, Stassopoulou A, Keravnou E (2014) Artificial intelligence in medicine temporal abstraction and temporal Bayesian networks in clinical domains: a survey. Artif Intell Med 60(3):133–149. doi: 10.1016/j.artmed.2013.12.007 CrossRefGoogle Scholar
  33. Papageorgiou EI, Salmeron JL (2013) A review of fuzzy cognitive maps research during the last decade. IEEE Trans Fuzzy Syst 21(1):66–79CrossRefGoogle Scholar
  34. Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106Google Scholar
  35. Quinlan JR (1989) Unknown attribute values in induction. In: Proceedings of the 6th international machine learning workshop cornellCrossRefGoogle Scholar
  36. Radicioni DP, Esposito R (2010) BREVE: an HMPerceptron-based chord recognition system. Adv Music Inf Retr Stud Comput Intell 274:143–164Google Scholar
  37. Revesz P, Triplet T (2011) Temporal data classification using linear classifiers. Inf Syst 36(1):30–41. doi: 10.1016/j.is.2010.06.006 CrossRefGoogle Scholar
  38. Salmeron JL, Papageorgiou EI (2014) Fuzzy grey cognitive maps and nonlinear Hebbian learning in process control. Appl Intell. doi: 10.1007/s10489-013-0511-z CrossRefGoogle Scholar
  39. San-Segundo R, Lorenzo-Trueba J, Martínez-González B, Pardo JM (2016) Segmenting human activities based on HMMs using smartphone inertial sensors. Pervasive Mob Comput 30:84–96. doi: 10.1016/j.pmcj.2016.01.004 CrossRefGoogle Scholar
  40. Stylios CD, Groumpos PP (2004) Modeling complex systems using fuzzy cognitive maps. IEEE Trans Syst Man Cybern Part A Syst Hum 34(1):155–162. doi: 10.1109/TSMCA.2003.818878 CrossRefGoogle Scholar
  41. Tseng VS, Lee CH (2009) Effective temporal data classification by integrating sequential pattern mining and probabilistic induction. Expert Syst Appl 36(5):9524–9532. doi: 10.1016/j.eswa.2008.10.077 CrossRefGoogle Scholar
  42. Tseng VSM, Lee C (2005) CBS: a new classification method by using sequential patterns. In: Proceedings of SIAM international conference on data mining, pp 596–600CrossRefGoogle Scholar
  43. Vasslides JM, Jensen OP (2016) Fuzzy cognitive mapping in support of integrated ecosystem assessments: developing a shared conceptual model among stakeholders. J Environ Manag 166:348–356. doi: 10.1016/j.jenvman.2015.10.038 CrossRefGoogle Scholar
  44. Wang X, Ji Q (2014) Context augmented dynamic Bayesian networks for event recognition. Pattern Recogn Lett 43:62–70. doi: 10.1016/j.patrec.2013.07.015 CrossRefGoogle Scholar
  45. Wang X, Liu X, Pedrycz W, Zhang L (2015) Fuzzy rule based decision trees. Pattern Recogn 48(1):50–59. doi: 10.1016/j.patcog.2014.08.001 CrossRefGoogle Scholar
  46. Wu G-D, Zhu Z-W (2014) An enhanced discriminability recurrent fuzzy neural network for temporal classification problems. Fuzzy Sets Syst 237:47–62. doi: 10.1016/j.fss.2013.05.007 MathSciNetCrossRefGoogle Scholar
  47. Zare M, Rezvani Z, Benasich AA (2016) Automatic classification of 6-month-old infants at familial risk for language-based learning disorder using a support vector machine. Clin Neurophysiol 127(7):2695–2703. doi: 10.1016/j.clinph.2016.03.025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shih Yin Ooi
    • 1
  • Shing Chiang Tan
    • 1
  • Wooi Ping Cheah
    • 1
  1. 1.Multimedia UniversityMelakaMalaysia

Personalised recommendations