Advertisement

Iterative subtraction facilitates automated, quantitative analysis of multiple pollen tube growth features

  • Nathaniel Ponvert
  • Jacob Goldberg
  • Alexander Leydon
  • Mark A. JohnsonEmail author
Original Article
Part of the following topical collections:
  1. Cellular Omics Methods in Plant Reproduction Research
  2. Cellular Omics Methods in Plant Reproduction Research

Abstract

In flowering plants, successful reproduction and generation of seed depends on the delivery of immotile sperm to female gametes via the pollen tube. As reproduction in flowering plants is the cornerstone of our agricultural industry, there is a need to uncover the genes, small molecules, and environmental conditions that affect pollen tube growth dynamics. However, methods for measuring pollen tube phenotypes are labor intensive, and suffer from a tradeoff between workload and resolution. To approach these problems, we use an image analysis technique called Automated Stack Iterative Subtraction (ASIST). Our tool converts growing pollen tube tips into closed particles, making the automated simultaneous extraction of multiple pollen tube phenotypes from hundreds of individual cells tractable via existing particle identification technology. Here we use our tool to analyze growth dynamics of pollen tubes in vitro, and semi in vivo. We show that ASIST provides a framework for robust, high throughput analysis of pollen tube growth behaviors in populations of cells, thus facilitating pollen tube phenomics.

Keywords

Pollen tube Tip extension Growth dynamics Automation Phenomics 

Notes

Acknowledgements

We thank Judith Bender, Daniel Damineli, Alison DeLong, Jennifer Forcina, and Jenna Kotak for helpful discussions and Sheila McCormick for providing Tomato (VF-36) LAT52:GFP seeds. M.A.J. and N.P. were supported by National Science Foundation (NSF) Grant IOS- IOS-1540019 (M.J.) and National Institutes of Health Training Grant #T32-GM007601 (N.P.).

Supplementary material

497_2018_351_MOESM1_ESM.png (614 kb)
Supplementary Figure 1 ASIST preprocessing for DIC tip identification. ASIST is capable of defining tip extension in spite of variable tip definition from Differential Interference Contrast (DIC) timelapse movies. A1-5. Five representative frames from a DIC timelapse of tomato pollen tube growth.  B1-5. Frames from series A after minimum pixel intensity filtering over five pixels. C1-5. Frames from series B after contrast enhancement.  D1-5. Frames from series C after median pixel intensity filtering over eight pixels.  E1-5. Frames from series D after inversion.  F1-5. Frames from series E after contrast enhancement.  G1-5. Frames from series F after iterative subtraction.  H1-5.  Frames from series G (false colored in cyan) overlayed onto original DIC frames (PNG 613 kb)
497_2018_351_MOESM2_ESM.png (33 kb)
Supplementary Figure 2 Growth rate comparison between Semi-in vivo and in vitro grown pollen tubes. A. Comparison between pollen tube total displacement. S.I.V. pollen tubes grow significantly longer than in vitro pollen (ANOVA, α = 0.05, Bonferroni post hoc). B. Comparison between average growth rate of S.I.V. and in vitro pollen tubes. S.I.V. tubes grow significantly faster than in vitro grown pollen (PNG 32 kb)
497_2018_351_MOESM3_ESM.zip (912 mb)
Supplementary material 3 (ZIP 933904 kb)

References

  1. Aloisi I, Cai G, Faleri C, Navazio L, Serafini-Fracassini D, del Duca S (2017) Spermine regulates pollen tube growth by modulating Ca2+-dependent actin organization and cell wall structure. Front Plant Sci 8:1701CrossRefGoogle Scholar
  2. Arshad MS, Farooq M, Asch F, Krishna JSV, Prasad PVV, Siddique KHM (2017) Thermal stress impacts reproductive development and grain yield in rice. Plant Physiol Biochem 115:57–72CrossRefGoogle Scholar
  3. Barberini ML, Sigaut L, Huang WJ, Mangano S, Juarez SPD, Marzol E, Estevez J, Obertello M, Pietrasanta L, Tang WH, Muschietti J (2018) Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor. Plant Reprod 31:159–169CrossRefGoogle Scholar
  4. Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, Schroeder JI, Grossniklaus U (2009) Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–3288CrossRefGoogle Scholar
  5. Breygina M, Matveyeva N, Polevova S, Meychik N, Nikolaeva Y, Mamaeva A, Yermakov I (2012) Ni2+ effects on Nicotiana tabacum L. pollen germination and pollen tube growth. Biometals 25:1221–1233CrossRefGoogle Scholar
  6. Chen J, Yu F, Liu Y, Du C, Li X, Zhu S, Wang X, Lan W, Rodriguez PL, Liu X, Li D, Chen L, Luan S (2016) FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci USA 113:E5519–E5527CrossRefGoogle Scholar
  7. Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S, Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KE, Jalden J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F, Tinevez JY, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan HW, Tsai YS, Ortiz De Solorzano C, Olivo-Marin JC, Meijering E (2014) Objective comparison of particle tracking methods. Nat Methods 11:281–289CrossRefGoogle Scholar
  8. Cheung AY, Wu HM (2016) Plant biology lure is bait for multiple receptors. Nature 531:178–180CrossRefGoogle Scholar
  9. Cheung AY, Wang H, Wu HM (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393CrossRefGoogle Scholar
  10. Damineli DSC, Portes MT, Feijo JA (2017) Oscillatory signatures underlie growth regimes in Arabidopsis pollen tubes: computational methods to estimate tip location, periodicity, and synchronization in growing cells. J Exp Bot 68:3267–3281CrossRefGoogle Scholar
  11. Dresselhaus T, Coimbra S (2016) Plant reproduction: AMOR enables males to respond to female signals. Curr Biol 26:R321–R323CrossRefGoogle Scholar
  12. Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male–female interactions during pollen tube reception. Science 317:656–660CrossRefGoogle Scholar
  13. Gao YB, Wang CL, Wu JY, Zhou HS, Jiang XT, Wu J, Zhang SL (2014) Low temperature inhibits pollen tube growth by disruption of both tip-localized reactive oxygen species and endocytosis in Pyrus bretschneideri Rehd. Plant Physiol Biochem 74:255–262CrossRefGoogle Scholar
  14. Gao QF, Gu LL, Wang HQ, Fei CF, Fang X, Hussain J, Sun SJ, Dong JY, Liu HT, Wang YF (2016) Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc Natl Acad Sci USA 113:3096–3101CrossRefGoogle Scholar
  15. Gilroy S (2017) Pollen tube vs CHUKNORRIS: the action is pulsatile. J Exp Bot 68:3041–3043CrossRefGoogle Scholar
  16. Higashiyama T, Inatsugi R, Sakamoto S, Sasaki N, Mori T, Kuroiwa H, Nakada T, Nozaki H, Kuroiwa T, Nakano A (2006) Species preferentiality of the pollen tube attractant derived from the synergid cell of Torenia fournieri. Plant Physiol 142:481–491CrossRefGoogle Scholar
  17. Jiang YF, Lahlali R, Karunakaran C, Kumar S, Davis AR, Bueckert RA (2015) Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ 38:2387–2397CrossRefGoogle Scholar
  18. Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–1080CrossRefGoogle Scholar
  19. Kim C, Ruberto T, Phamduy P, Porfiri M (2018) Closed-loop control of zebrafish behaviour in three dimensions using a robotic stimulus. Sci Rep 8:657CrossRefGoogle Scholar
  20. Leydon AR, Beale KM, Woroniecka K, Castner E, Chen J, Horgan C, Palanivelu R, Johnson MA (2013) Three MYB transcription factors control pollen tube differentiation required for sperm release. Curr Biol 23:1209–1214CrossRefGoogle Scholar
  21. Liang Y, Tan ZM, Zhu L, Niu QK, Zhou JJ, Li M, Chen LQ, Zhang XQ, Ye D (2013) MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. PLoS Genet 9:e1003933CrossRefGoogle Scholar
  22. Ling Y, Chen T, Jing YP, Fan LS, Wan YL, Lin JX (2013) gamma-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii. Planta 238:831–843CrossRefGoogle Scholar
  23. Liu X, Castro C, Wang Y, Noble J, Ponvert N, Bundy M, Hoel C, Shpak E, Palanivelu R (2016) The role of LORELEI in pollen tube reception at the interface of the synergid cell and pollen tube requires the modified eight-cysteine motif and the receptor-like kinase feronia. Plant Cell 28:1035–1052CrossRefGoogle Scholar
  24. Mangano S, Juarez SPD, Estevez JM (2016) ROS regulation of polar growth in plant cells. Plant Physiol 171:1593–1605CrossRefGoogle Scholar
  25. Marton ML, Fastner A, Uebler S, Dresselhaus T (2012) Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Biol 22:1194–1198CrossRefGoogle Scholar
  26. Mizukami AG, Inatsugi R, Jiao J, Kotake T, Kuwata K, Ootani K, Okuda S, Sankaranarayanan S, Sato Y, Maruyama D, Iwai H, Garenaux E, Sato C, Kitajima K, Tsumuraya Y, Mori H, Yamaguchi J, Itami K, Sasaki N, Higashiyama T (2016) The AMOR arabinogalactan sugar chain induces pollen-tube competency to respond to ovular guidance. Curr Biol 26:1091–1097CrossRefGoogle Scholar
  27. Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-Mccaw PS, Gahtan E, Xiao T, Nevin LM, Gosse NJ, Staub W, Finger-Baier K, Baier H (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:575–588CrossRefGoogle Scholar
  28. Ngo QA, Vogler H, Lituiev DS, Nestorova A, Grossniklaus U (2014) A calcium dialog mediated by the feronia signal transduction pathway controls plant sperm delivery. Dev Cell 29:491–500CrossRefGoogle Scholar
  29. Palanivelu R, Johnson MA (2010) Functional genomics of pollen tube–pistil interactions in Arabidopsis. Biochem Soc Trans 38:593–597CrossRefGoogle Scholar
  30. Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7CrossRefGoogle Scholar
  31. Palanivelu R, Tsukamoto T (2012) Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. Wiley Interdiscip Rev Dev Biol 1:96–113CrossRefGoogle Scholar
  32. Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLOS Genet 5:e1000621CrossRefGoogle Scholar
  33. Ramesh SA, Tyerman SD, Xu B, Bose J, Kaur S, Conn V, Domingos P, Ullah S, Wege S, Shabala S, Feijo JA, Ryan PR, Gilliham M (2015) GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun 6:7879CrossRefGoogle Scholar
  34. Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, Muschietti JP (2018) Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett 592:233–243CrossRefGoogle Scholar
  35. Shamsudhin N, Laeubli N, Atakan HB, Vogler H, Hu C, Haeberle W, Sebastian A, Grossniklaus U, Nelson BJ (2016) Massively parallelized pollen tube guidance and mechanical measurements on a lab-on-a-chip platform. PLoS ONE 11:e0168138CrossRefGoogle Scholar
  36. Snider JL, Oosterhuis DM, Skulman BW, Kawakami EM (2009) Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiol Plant 137:125–138CrossRefGoogle Scholar
  37. Snider JL, Oosterhuis DM, Loka DA, Kawakami EM (2011) High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. J Plant Physiol 168:1168–1175CrossRefGoogle Scholar
  38. Song GC, Wang MM, Zeng B, Zhang J, Jiang CL, Hu QR, Geng GT, Tang CM (2015) Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta 241:1271–1285CrossRefGoogle Scholar
  39. Steinhorst L, Kudla J (2013) Calcium - a central regulator of pollen germination and tube growth. Biochim Biophys Acta Mol Cell Res 1833:1573–1581CrossRefGoogle Scholar
  40. Steinhorst L, Mahs A, Ischebeck T, Zhang C, Zhang X, Arendt S, Schultke S, Heilmann I, Kudla J (2015) Vacuolar CBL-CIPK12 Ca(2+)-sensor-kinase complexes are required for polarized pollen tube growth. Curr Biol 25:1475–1482CrossRefGoogle Scholar
  41. Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245CrossRefGoogle Scholar
  42. Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90CrossRefGoogle Scholar
  43. Zhao LN, Shen LK, Zhang WZ, Zhang W, Wang Y, Wu WH (2013) Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. Plant Cell 25:649–661CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nathaniel Ponvert
    • 1
  • Jacob Goldberg
    • 1
  • Alexander Leydon
    • 2
  • Mark A. Johnson
    • 1
    Email author
  1. 1.Department of Molecular Biology, Cell Biology, and BiochemistryBrown UniversityProvidenceUSA
  2. 2.Department of BiologyUniversity of WashingtonSeattleUSA

Personalised recommendations