Subgroup Growth of Virtually Cyclic Right-Angled Coxeter Groups and Their Free Products

  • Hyungryul BaikEmail author
  • Bram PetriEmail author
  • Jean RaimbaultEmail author


We determine the asymptotic number of index n subgroups in virtually cyclic Coxeter groups and their free products as n → ∞.

Mathematics Subject Classification (2010)

20F55 20E07 05A15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Baik, B. Petri and J. Raimbault: Subgroup growth of right-angled Artin and Coxeter groups, Preprint, arXiv:1805.03893, 2018.Google Scholar
  2. [2]
    S. Basu, R. Pollack and M.-F. Roy: Algorithms in real algebraic geometry, second ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006.CrossRefzbMATHGoogle Scholar
  3. [3]
    S. Chowla, I. N. Herstein and W. K. Moore: On recursions connected with symmetric groups. I, Canadian J. Math. 3 (1951), 328–334.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L. Ciobanu and A. Kolpakov: Three-dimensional maps and subgroup growth, Preprint, arXiv:1712.01418, 2017.Google Scholar
  5. [5]
    J. D. Dixon: The probability of generating the symmetric group, Math. Z. 110 (1969), 199–205.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Flajolet and R. Sedgewick: Analytic combinatorics, Cambridge University Press, Cambridge, 2009.CrossRefzbMATHGoogle Scholar
  7. [7]
    B. Harris and L. Schoenfeld: The number of idempotent elements in symmetric semigroups, J. Combinatorial Theory 3 (1967), 122–135.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    W. K. Hayman: A generalisation of Stirling’s formula, J. Reine Angew. Math. 196 (1956), 67–95.MathSciNetzbMATHGoogle Scholar
  9. [9]
    M. W. Liebeck and A. Shalev: Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks, J. Algebra 276 (2004), 552–601.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Lubotzky and D. Segal: Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003.CrossRefzbMATHGoogle Scholar
  11. [11]
    L. Moser and M. Wyman: Asymptotic expansions, Canad. J. Math. 8 (1956), 225–233.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    L. Moser and M. Wyman: Asymptotic expansions. II, Canad. J. Math. 9 (1957), 194–209.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    T. Müller: Combinatorial aspects of finitely generated virtually free groups, J. London Math. Soc. (2) 44 (1991), 75–94.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    T. Müller: Subgroup growth of free products, Invent. Math. 126 (1996), 111–131.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    T. Müller: Finite group actions and asymptotic expansion of e P(z), Combinatorica 17 (1997), 523–554.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    T. W. Müller and J.-C. Puchta: Character theory of symmetric groups and subgroup growth of surface groups, J. London Math. Soc. (2) 66 (2002), 623–640.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. M. Odlyzko: Asymptotic enumeration methods, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, 1063–1229.zbMATHGoogle Scholar
  18. [18]
    E. M. Wright: On the coefficients of power series having exponential singularities. II, J. London Math. Soc. 24 (1949), 304–309.MathSciNetCrossRefGoogle Scholar
  19. [19]
    E. Maitland Wright: On the Coefficients of Power Series Having Exponential Singularities, J. London Math. Soc. 8 (1933), 71–79.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesKAISTDaejeonSouth Korea
  2. 2.Mathematical InstituteUniversity of BonnBonnGermany
  3. 3.Institut de Mathématiques de ToulouseToulouse Cedex 9France
  4. 4.UMR5219 Université de ToulouseToulouse Cedex 9France
  5. 5.CNRS UPS IMTToulouse Cedex 9France

Personalised recommendations