Advertisement

Hyper-Atoms Applied to the Critical Pair Theory

  • Yahya O. Hamidoune
Article
  • 6 Downloads

Abstract

The isoperimetric method is often useful for proving results regarding sumsets. Here, we introduce the notion of a hyper-atom into the method, which overcomes a previous weakness when dealing with atoms that are cosets. To show the utility of this new object, we give a new isoperimetric proof of the cornerstone of classical critical pair theory: The Kemperman Structure Theorem, proved in its so-called “dual” formulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The author is grateful to an anonymous referee for many valuable comments on the first two drafts.

References

  1. [1]
    R. Aharoni and E. Berger: Menger’s Theorem for Infinite Graphs, Invent. Math.176 (2009), 1–62.MathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Balandraud: Un nouveau point de vue isopérimetrique appliqué au théorème de Kneser, Ann. Inst. Fourier58 (2008), 915–943.MathSciNetCrossRefGoogle Scholar
  3. [3]
    D. Grynkiewicz: Quasi-periodic decompositions and the Kemperman’s structure theorem, European J. Combin.26 (2005), 559–575.MathSciNetCrossRefGoogle Scholar
  4. [4]
    D. Grynkiewicz: A step beyond Kemperman’s structure theorem, Mathematika55 (2009), 67–114.MathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Grynkiewicz: Structural Additive Theory, Developments in Mathematics 30, Springer (2013).Google Scholar
  6. [6]
    Y. O. Hamidoune: Quelques problèmes de connexité dans les graphes orientés, J. Comb. Theory, Ser. B30 (1981), 1–10.CrossRefGoogle Scholar
  7. [7]
    Y. O. Hamidoune: On the connectivity of Cayley digraphs, Europ. J. Combinatorics, 5 (1984), 309–312.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Y. O. Hamidoune: Subsets with small sums in abelian groups I: The Vosper property, European J. Combin.18 (1997), 541–556.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Y. O. Hamidoune: An isoperimetric method in additive theory, J. Algebra179 (1996), 622–630.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Y. O. Hamidoune; Some results in Additive number Theory I: The critical pair Theory, Acta Arith.96 (2000), 97–119.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Y. O. Hamidoune: Some additive applications of the isopermetric approach, Annales de l’ Institut Fourier58 (2008), 2007–2036.CrossRefGoogle Scholar
  12. [12]
    Y. O. Hamidoune and A. Plagne: A new critical pair theorem applied to sum-free sets, Comment. Math. Helv.79 (2004), 183–207.MathSciNetCrossRefGoogle Scholar
  13. [13]
    J. H. B. Kemperman: On small sumsets in Abelian groups, Acta Math.103 (1960), 66–88.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Y. O. Hamidoune, O. Serra and G. Zémor: One some subgroup chains related to Kneser’s Theorem, J. Théor. Nr. Bordx.20 (2008), 125–130.CrossRefGoogle Scholar
  15. [15]
    R. A. Lee: Proving Kneser’s theorem for finite groups by another e-transform, Proc. Amer. Math. Soc.44 (1974), 255–258.MathSciNetzbMATHGoogle Scholar
  16. [16]
    V. F. Lev: Critical pairs in abelian groups and Kemperman’s structure theorem, Int. J. Number Theory2 (2006), 379–396.MathSciNetCrossRefGoogle Scholar
  17. [17]
    M. B. Nathanson: Additive Number Theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math. 165, Springer, 1996.Google Scholar
  18. [18]
    T. Tao and V. H. Vu: Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105 (2006), Cambridge University Press.Google Scholar
  19. [19]
    G. Vosper: The critical pairs of subsets of a group of prime order, J. London Math. Soc.31 (1956), 200–205.MathSciNetCrossRefGoogle Scholar

Copyright information

© Janos Bolyai Mathematical Society and Springer-Verlag 2019

Authors and Affiliations

  • Yahya O. Hamidoune
    • 1
  1. 1.UPMC Univ Paris 06, E. CombinatoireParisFrance

Personalised recommendations