Local Properties in Colored Graphs, Distinct Distances, and Difference Sets

  • Cosmin PohoataEmail author
  • Adam Sheffer

Mathematics Subject Classification (2010)

05C35, 05C55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Axenovich, Z. Füredi and D. Mubayi: On generalized Ramsey theory: the bipartite case, J. Combinat. Theory B 79 (2000), 66–86.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    F. A. Behrend: On sets of integers which contain no three terms in arithmetical progression, Proc. Natl. Acad. Sci. U.S.A. 32 (1946), 331.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Conlon, J. Fox, C. Lee and B. Sudakov: The Erdős-Gyárfás problem on generalized Ramsey numbers, Proc. London Math. Soc. 110 (2014), 1–18.CrossRefzbMATHGoogle Scholar
  4. [4]
    P. Erdős: On some metric and combinatorial geometric problems, Discrete Math. 60 (1986), 147–153.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    P. Erdős: Solved and unsolved problems in combinatorics and combinatorial number theory, Proc. Twelfth Southeastern Conference on Combinatorics, Graph Theory and Compu Congr. Numer. 32 (1981), 49–62.MathSciNetzbMATHGoogle Scholar
  6. [6]
    P. Erdős: Problems and results on finite and infinite graphs, Recent advances in graph theory (1974), 183–192.Google Scholar
  7. [7]
    P. Erdős: On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183–190.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Erdős: On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Erdős and A. Gyárfás: A variant of the classical Ramsey problem, Combinatorica 17 (1997), 459–467.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Fox, J. Pach and A. Suk: More distinct distances under local conditions, Combinatorica, to appear.Google Scholar
  11. [11]
    W. T. Gowers: Quasirandom groups, Combin. Probab. Comput. 17 (2008), 363–387.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    L. Guth and N. H. Katz: On the Erdős distinct distances problem in the plane, Annals Math. 181 (2015), 155–190.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Jukna: Extremal combinatorics: with applications in computer science, Springer Science, 2011.Google Scholar
  14. [14]
    G. Sárközy and S. Selkow: On edge colorings with at least q colors in every subset of p vertices, Electron. J. Combin. 8 (2001), R9.MathSciNetzbMATHGoogle Scholar
  15. [15]
    A. Sheffer: Distinct Distances: Open Problems and Current Bounds, arXiv:1406.1949.Google Scholar
  16. [16]
    T. Tao and V. H. Vu: Additive combinatorics, Cambridge University Press, 2006.CrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Department of MathematicsBaruch College, City University of New YorkNew YorkUSA

Personalised recommendations