, Volume 39, Issue 2, pp 459–475 | Cite as

List Supermodular Coloring with Shorter Lists

  • Yu YokoiEmail author


In 1995, Galvin proved that a bipartite graph G admits a list edge coloring if every edge is assigned a color list of length Δ(G) the maximum degree of the graph. This result was improved by Borodin, Kostochka and Woodall, who proved that G still admits a list edge coloring if every edge e=st is assigned a list of max{dG(s);dG(t)} colors. Recently, Iwata and Yokoi provided the list supermodular coloring theorem that extends Galvin's result to the setting of Schrijver's supermodular coloring. This paper provides a common generalization of these two extensions of Galvin's result.

Mathematics Subject Classification (2010)

05C15 68R05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Bárász, J. Becker and A. Frank: An algorithm for source location in directed graphs, Operations Research Letters 33 (2005), 221–230.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    O. V. Borodin, A. V. Kostochka and D. R. Woodall: List edge and list total colourings of multigraphs, Journal of combinatorial theory, Series B 71 (1997), 184–204.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Frank: Connections in Combinatorial Optimization, Oxford Lecture Series in Mathematics and its Applications, 38, Oxford University Press, Oxford, 2011.zbMATHGoogle Scholar
  4. [4]
    A. Frank and T. Király: A survey on covering supermodular functions, Research Trends in Combinatorial Optimization (W. J. Cook, L. Lovász, and J. Vygen, eds.), Springer-Verlag, 2009, 87–126.CrossRefGoogle Scholar
  5. [5]
    F. Galvin: The list chromatic index of a bipartite multigraph, Journal of Combinatorial Theory, Series B 63 (1995), 153–158.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Iwata and Y. Yokoi: List supermodular coloring, Combinatorica, to appear.Google Scholar
  7. [7]
    D. Kőnig: Graphok és alkalmazásuk a determinánsok és a halmazok elméletére (Hungarian; Graphs and their application to the theory of determinants and sets), Mathematikai és Természettudományi Értesitő 34 (1916), 104–119.zbMATHGoogle Scholar
  8. [8]
    A. Schrijver: Supermodular colourings, Matroid Theory (L. Lovász and A. Recski, eds.), North-Holland, Amsterdam, 1985, 327–343.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.National Institute of InformaticsTokyoJapan

Personalised recommendations