Twenty (Short) Questions

  • Yuval DaganEmail author
  • Yuval Filmus
  • Ariel Gabizon
  • Shay Moran

Mathematics Subject Classification (2010)

94A50 90B40 68E05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Ahlswede and I. Wegener: Search problems, John Wiley & Sons, Inc., New York, 1987.zbMATHGoogle Scholar
  2. [2]
    J. A. Aslam and A. Dhagat: Searching in the presence of linearly bounded errors, in: Proceedings of the twenty-third annual ACM symposium on Theory of computing (STOC’ 91), 486–493, 1991.CrossRefGoogle Scholar
  3. [3]
    H. Aydinian, F. Cicalese and C. Deppe, eds.: Information Theory, Combinatorics, and Search Theory, Springer-Verlag Berlin Heidelberg, 2013.zbMATHGoogle Scholar
  4. [4]
    D. W. Boyd: The asymptotic number of solutions of a diophantine equation from coding theory, Journal of Combinatorial Theory, Ser. A 18 (1975), 210–215.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. M. Capocelli, R. Giancarlo and I. J. Taneja: Bounds on the redundancy of Huffman codes, IEEE Transactions on Information Theory IT-32 (1986), 854–857.Google Scholar
  6. [6]
    T. M. Cover and J. A. Thomas: Elements of information theory (2. ed.), Wiley, 2006.zbMATHGoogle Scholar
  7. [7]
    Y. Dagan, Y. Filmus and S. Moran: Comparison and equality queries achieve optimal redundancy, in preparation.Google Scholar
  8. [8]
    A. Dhagat, P. Gács and P. Winkler: On playing “twenty questions” with a liar, in: Proceedings of 3rd Symposium on Discrete Algorithms (SODA’92), 16–22, 1992.Google Scholar
  9. [9]
    R. Dorfman: The detection of defective members of large populations, The Annals of Mathematical Statistics 14 (1943), 436–440.CrossRefGoogle Scholar
  10. [10]
    D.-Z. Du and F. K. Hwang: Combinatorial Group Testing and Its Applications, volume 12 of Series on Applied Mathematics, World Scientific, 2nd edition, 1999.CrossRefGoogle Scholar
  11. [11]
    M. L. Fredman: How good is the information theory bound in sorting? Theoretical Computer Science 1 (1976), 355–361.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R. G. Gallager: Variations on a theme by Huffman, IEEE Transactions on Information Theory IT-24 (1987), 668–674.Google Scholar
  13. [13]
    E. N. Gilbert and E. F. Moore: Variable-length binary encodings, Bell System Technical Journal 38 (1959), 933–967.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Y. Horibe: An improved bound for weight-balanced tree, Information and Control 34 (1977), 148–151.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    D. A. Huffman: A method for the construction of minimum-redundancy codes, in: Proceedings of the I.R.E., 1098–1103, 1952.Google Scholar
  16. [16]
    O. Johnsen: On the redundancy of binary Huffman codes, IEEE Transactions on Information Theory IT-26 (1980), 220–222.Google Scholar
  17. [17]
    Gy. O. H. Katona: Combinatorial search problems, in: J. N. Srivastava et al., editor, A Survery of Combinatorial Theory, North-Holland Publishing Company, 1973.Google Scholar
  18. [18]
    P. Klein and N. E. Young: On the number of iterations for Dantzig-Wolfe optimiza- tion and packing-covering approximation algorithms, SIAM Journal on Computing 44 (2015), 1154–1172.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    D. Krenn and S. Wagner: Compositions into powers of b: asymptotic enumeration and parameters, Algorithmica 75 (2016), 606–631.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Z. Lonc and I. Rival: Chains, antichains, and fibres, Journal of Combinatorial Theory, Series A 44 (1987), 207–228.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Manstetten: Tight bounds on the redundancy of Huffman codes, IEEE Transactions on Information Theory IT-38 (1992), 144–151.Google Scholar
  22. [22]
    S. Mohajer, P. Pakzad and A. Kakhbod: Tight bounds on the redundancy of Huffman codes, in: Information Theory Workshop (ITW’ 06), 131–135, 2006.Google Scholar
  23. [23]
    B. L. Montgomery and J. Abrahams: On the redundancy of optimal binary prefix- condition codes for finite and infinite sources, IEEE Transactions on Information Theory IT-33 (1987), 156–160.Google Scholar
  24. [24]
    S. Moran and A. Yehudayoff: A note on average-case sorting, Order 33 (2016), 23–28.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    N. Nakatsu: Bounds on the redundancy of binary alphabetical codes, IEEE Transactions on Information Theory IT-37 (1991), 1225–1229.Google Scholar
  26. [26]
    J. Rissanen: Bounds for weight balanced trees, IBM Journal of Research and Development 17 (1973), 101–105.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R. L. Rivest, A. R. Meyer, D. J. Kleitman, K. Winklmann and J. Spencer: Coping with errors in binary search procedures, Journal of Computer and System Sciences 20 (1980), 396–404.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J. Spencer and P. Winkler: Three thresholds for a liar, Combinatorics, Probability and Computing 1 (1992), 81–93.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuval Dagan
    • 1
    Email author
  • Yuval Filmus
    • 2
  • Ariel Gabizon
    • 1
  • Shay Moran
    • 3
  1. 1.Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Computer Science DepartmentTechnion - Israel Institute of TechnologyHaifaIsrael
  3. 3.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations