, Volume 38, Issue 6, pp 1437–1456 | Cite as

List Supermodular Coloring

  • Satoru IwataEmail author
  • Yu Yokoi
Original paper

Mathematics Subject Classification (2000)

06A07 05C15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Aigner and G. M. Ziegler: Proofs from the Book, Springer-Verlag, Berlin & Heidelberg, 2010.CrossRefzbMATHGoogle Scholar
  2. [2]
    EGRES: Open problems: (accessed October 28, 2016).Google Scholar
  3. [3]
    T. Fleiner: A fixed-point approach to stable matchings and some applications, Mathematics of Operations Research 28 (2003), 103–126.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Fleiner and Z. Jankó: On weighted kernels of two posets, Order 33 (2016), 51–65.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Frank and T. Király: A survey on covering supermodular functions, Research Trends in Combinatorial Optimization (W. J. Cook, L. Lovász, and J. Vygen, eds.), Springer-Verlag, 2009, 87–126.Google Scholar
  6. [6]
    A. Frank, T. Király, J. Pap and D. Pritchard: Characterizing and recognizing generalized polymatroids, Mathematical Programming 146 (2014), 245–273.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Frank and é. Tardos: Generalized polymatroids and submodular flows, Mathematical Programming 42 (1988), 489–563.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Gale and L. S. Shapley: College admissions and the stability of marriage, American Mathematical Monthly 69 (1962), 9–15.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    F. Galvin: The list chromatic index of a bipartite multigraph, Journal of Combinatorial Theory, Series B 63 (1995), 153–158.zbMATHGoogle Scholar
  10. [10]
    M. Grötschel, L. Lovász and A. Schrijver: Geometric Algorithms and Combinatorial Optimization (2nd ed.), Springer-Verlag, Berlin, 1993.CrossRefzbMATHGoogle Scholar
  11. [11]
    R. P. Gupta: An edge-coloration theorem for bipartite graphs with applications, Discrete Mathematics 23 (1978), 229–233.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Iwata, L. Fleischer and S. Fujishige: A combinatorial strongly polynomial algorithm for minimizing submodular functions, Journal of the ACM 48 (2001), 761–777.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D. Kőnig: Graphok és alkalmazásuk a determinánsok és a halmazok elméletére (Hungarian; Graphs and their application to the theory of determinants and sets), Mathematikai és Természettudományi Értesitő 34 (1916), 104–119.zbMATHGoogle Scholar
  14. [14]
    Y. T. Lee, A. Sidford and S. C.-W. Wong: A faster cutting plane method and its implications for combinatorial and convex optimization, Proc. 56th FOCS, IEEE, 2015, 1049–1065.Google Scholar
  15. [15]
    J. B. Orlin: A faster strongly polynomial time algorithm for submodular function minimization, Mathematical Programming 118 (2009), 237–251.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    B. Sands, N. Sauer and R. Woodrow: On monochromatic paths in edge-coloured digraphs, Journal of Combinatorial Theory, Series B 33 (1982), 271–275.zbMATHGoogle Scholar
  17. [17]
    A. Schrijver: Supermodular colourings, Matroid Theory (L. Lovász and A. Recski, eds.), North-Holland, Amsterdam, 1985, 327–343.Google Scholar
  18. [18]
    A. Schrijver: A combinatorial algorithm minimizing submodular functions in strongly polynomial time, Journal of Combinatorial Theory, Series B 80 (2000), 346–355.zbMATHGoogle Scholar
  19. [19]
    é. Tardos: Generalized matroids and supermodular colourings, in: Matroid Theory (L. Lovász and A. Recski, eds.), North-Holland, Amsterdam, 1985, 359–382.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical InformaticsUniversity of TokyoTokyoJapan
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations