Advertisement

International Journal of Biometeorology

, Volume 63, Issue 12, pp 1641–1650 | Cite as

Short-term effects of ambient temperature on non-external and cardiovascular mortality among older adults of metropolitan areas of Mexico

  • Magali Hurtado-Díaz
  • Julio C. Cruz
  • José L. Texcalac-Sangrador
  • Eunice E. Félix-Arellano
  • Iván Gutiérrez-Ávila
  • Arely A. Briseño-Pérez
  • Nenetzen Saavedra-Lara
  • Aurelio Tobías
  • Horacio Riojas-RodríguezEmail author
Original Paper
  • 107 Downloads

Abstract

Multi-city studies assessing the association between acute exposure to temperature and mortality in Latin American are limited. To analyze the short-term effect of changes in temperature (increase and decrease) on daily non-external and cardiovascular mortality from 1998 to 2014, in people 65 years old and over living in 10 metropolitan areas of Mexico. Analyses were performed through Poisson regression models with distributed lag non-linear models. Statistical comparison of minimum mortality temperature (MMT) and city-specific cutoffs of 24-h temperature mean values (5th/95th and 1st/99th percentiles) were used to obtain the mortality relative Risk (RR) for cold/hot and extreme cold/extreme hot, respectively, for the same day and lags of 0–3, 0–7, and 0–21 days. A meta-analysis was conducted to synthesize the estimates (RRpooled). Significant non-linear associations of temperature-mortality relation were found in U or inverted J shape. The best predictors of mortality associations with cold and heat were daily temperatures at lag 0–7 and lag 0–3, respectively. RRpooled of non-external causes was 6.3% (95%CI 2.7, 10.0) for cold and 10.2% (95%CI 4.4, 16.2) for hot temperatures. The RRpooled for cardiovascular mortality was 7.1% (95%CI 0.01, 14.7) for cold and 7.1% (95%CI 0.6, 14.0) for hot temperatures. Results suggest that, starting from the MMT, the changes in temperature are associated with an increased risk of non-external and specific causes of mortality in elderly people. Generally, heat effects on non-external and specific causes of mortality occur immediately, while cold effects occur within a few days and last longer.

Keywords

Ambient temperature Cardiovascular mortality Distributed lags Exposure-response function Minimum mortality temperature 

Notes

Acknowledgements

The authors would like to thank the National Meteorological Service (SMN-México) for providing meteorological data.

Funding

The study was supported by the fund of the Secretary of Environment and Natural Resources (SEMARNAT) and the Mexican Council of Science and Technology (CONACYT), grant SEMARNAT-2014-1-249465.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

484_2019_1778_MOESM1_ESM.pdf (151 kb)
ESM 1 (PDF 150 kb)
484_2019_1778_MOESM2_ESM.pdf (188 kb)
ESM 2 (PDF 188 kb)
484_2019_1778_MOESM3_ESM.pdf (185 kb)
ESM 3 (PDF 185 kb)
484_2019_1778_MOESM4_ESM.pdf (185 kb)
ESM 4 (PDF 184 kb)
484_2019_1778_MOESM5_ESM.pdf (105 kb)
ESM 5 (PDF 104 kb)
484_2019_1778_MOESM6_ESM.pdf (105 kb)
ESM 6 (PDF 105 kb)

References

  1. Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, Bisanti L, Kirchmayer U, Ballester F, Cadum E, Goodman PG, Hojs A, Sunyer J, Tiittanen P, Michelozzi P (2008) Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol 168(12):1397–1408.  https://doi.org/10.1093/aje/kwn266 CrossRefGoogle Scholar
  2. Baccini M, Kosatsky T, Analitis A, Anderson H, D’Ovidio M, Menne B, Michelozzi P, Biggeri A, PHEWE Collaborative Group (2011) Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios. J Epidemiol Community Health 65(1):64–70.  https://doi.org/10.1136/jech.2008.085639 CrossRefGoogle Scholar
  3. Barnett A (2007) Temperature and cardiovascular deaths in the US elderly. Epidemiology 18(3):369–372.  https://doi.org/10.1097/01.ede.0000257515.34445.a0 CrossRefGoogle Scholar
  4. Basu R (2009) High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ Health 8.  https://doi.org/10.1186/1476-069X-8-40
  5. Basu R, Ostro B (2008) A multicounty analysis identifying the populations vulnerable to mortality associated with high ambient temperature in California. Am J Epidemiol 168(6):632–637.  https://doi.org/10.1093/aje/kwn170 CrossRefGoogle Scholar
  6. Bouchama A, Dehbi M, Mohamed G, Matthies F, Shoukri M, Menne B (2007) Prognostic factors in heat wave-related deaths: a meta-analysis. Arch Intern Med 167:2170.  https://doi.org/10.1001/archinte.167.20.ira70009 CrossRefGoogle Scholar
  7. Braga A, Zanobetti A, Schwartz J (2002) The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ Health Perspect 110(9):859–863.  https://doi.org/10.1289/ehp.02110859 CrossRefGoogle Scholar
  8. Bunker A, Wildenhain J, Vandenbergh A, Henschke N, Rocklöv J, Hajat S, Sauerborn R (2016) Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine 6(April):258–268.  https://doi.org/10.1016/j.ebiom.2016.02.034 CrossRefGoogle Scholar
  9. Campos-Nonato I, Hernández-Barrera L, Pedroza-Tobías A, Medina C, Barquera S (2018) Hypertension in Mexican adults: prevalence, diagnosis and type of treatment. Ensanut MC 2016. Salud Publica de Mexico 60(3):233–243.  https://doi.org/10.21149/8813 CrossRefGoogle Scholar
  10. Carreras H, Zanobetti A, Koutrakis P (2015) Effect of daily temperature range on respiratory health in Argentina and its modification by impaired socio-economic conditions and PM10 exposures. Environ Pollut 206(November):175–182.  https://doi.org/10.1016/j.envpol.2015.06.037 CrossRefGoogle Scholar
  11. Chan E, Goggins W, Kim J, Griffiths S (2012) A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. J Epidemiol Community Health 66(4):322–327.  https://doi.org/10.1136/jech.2008.085167 CrossRefGoogle Scholar
  12. Dang T, Seposo X, Duc N, Thang T, An D, Hang L, Long T, Loan B, Honda Y (2016) Characterizing the relationship between temperature and mortality in tropical and subtropical cities: a distributed lag non-linear model analysis in hue, Viet Nam, 2009-2013. Glob Health Action 9(1):28738.  https://doi.org/10.3402/gha.v9.28738 CrossRefGoogle Scholar
  13. Dear K, McMichael A (2011) The health impacts of cold homes and fuel poverty. BMJ.  https://doi.org/10.1136/bmj.d2807
  14. DGIS (2016) México: Bases de Datos Sobre Defunciones. 2016. http://www.dgis.salud.gob.mx/contenidos/basesdedatos/std_defunciones.html
  15. Gasparrini A, Armstrong B (2010) Time series analysis on the health effects of temperature: advancements and limitations. Environ Res 110:633–638.  https://doi.org/10.1016/j.envres.2010.06.005 CrossRefGoogle Scholar
  16. Gasparrini A, Armstrong B, Kenward M (2010) Distributed lag non-linear models. Stat Med 29(21):2224–2234.  https://doi.org/10.1002/sim.3940 CrossRefGoogle Scholar
  17. Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklöv J, Forsberg B, Leone M, de Sario M, Bell ML, Guo YLL, Wu CF, Kan H, Yi SM, de Sousa Zanotti Stagliorio Coelho M, Saldiva PHN, Honda Y, Kim H, Armstrong B (2015) Mortality risk attributable to and low ambient temperature: a multicountry observational study. Lancet 386(9991):369–375.  https://doi.org/10.1016/S0140-6736(14)62114-0 CrossRefGoogle Scholar
  18. Goggins W, Ren C, Ng E, Yang C, Chan E (2013) Effect modification of the association between meteorological variables and mortality by urban climatic conditions in the Tropical City of Kaohsiung, Taiwan. Geospat Health 8(1):37–44.  https://doi.org/10.4081/gh.2013.52 CrossRefGoogle Scholar
  19. Guo Y, Gasparrini A, Armstrong B, Li S, Tawatsupa B, Tobias A, Lavigne E, de Sousa Zanotti Stagliorio Coelho M, Leone M, Pan X, Tong S, Tian L, Kim H, Hashizume M, Honda Y, Guo YLL, Wu CF, Punnasiri K, Yi SM, Michelozzi P, Saldiva PHN, Williams G (2014) Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology 25(6):781–789.  https://doi.org/10.1097/EDE.0000000000000165 CrossRefGoogle Scholar
  20. Guo Y, Punnasiri K, Tong S (2012) Effects of temperature on mortality in Chiang Mai City, Thailand: a time series study. Environ Health: A Global Access Science Source 11(1):36.  https://doi.org/10.1186/1476-069X-11-36 CrossRefGoogle Scholar
  21. Heisler GM, Brazel AJ (2019) The climate system. In: Hall MHP, Balogh SB (eds) Understanding urban ecology: An interdisciplinary systems approach. Springer International Publishing, Cham, pp 137–173.  https://doi.org/10.1007/978-3-030-11259-2_7 CrossRefGoogle Scholar
  22. Higgins J, Thompson S (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558.  https://doi.org/10.1002/sim.1186 CrossRefGoogle Scholar
  23. Higgins J, Thompson S, Deeks J, Altman D (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560.  https://doi.org/10.1136/bmj.327.7414.557 CrossRefGoogle Scholar
  24. INEGI (2010) México: Población Rural y Urbana. 2010. http://cuentame.inegi.org.mx/poblacion/rur_urb.aspx?tema=P
  25. INEGI (2017) México: Recursos Naturales.- Clima. 2017. http://www.inegi.org.mx/geo/contenidos/recnat/clima/
  26. Joe L, Hoshiko S, Dobraca D, Jackson R, Smorodinsky S, Smith D, Harnly M (2016) Mortality during a large-scale heatwave by place, demographic group, internal and external causes of death, and building climate zone. Int J Environ Res Public Health 13(3):299.  https://doi.org/10.3390/ijerph13030299 CrossRefGoogle Scholar
  27. Khanjani N, Bahrampour A (2013) Temperature and cardiovascular and respiratory mortality in desert climate. A case study of Kerman, Iran. Iranian Journal of Environmental Health Science and Engineering 10(11):11.  https://doi.org/10.1186/1735-2746-10-11 CrossRefGoogle Scholar
  28. Kim J, Lim Y, Kim H (2014) Outdoor temperature changes and emergency department visits for asthma in Seoul, Korea: a time-series study. Environ Res 135(November):15–20.  https://doi.org/10.1016/j.envres.2014.07.032 CrossRefGoogle Scholar
  29. Li Y, Ma Z, Zheng C, Shang Y (2015) Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China. Int J Biometeorol 59(12):1761–1770.  https://doi.org/10.1007/s00484-015-0984-z CrossRefGoogle Scholar
  30. Lin Y, Ho T, Wang Y (2011) Mortality risk associated with temperature and prolonged temperature extremes in elderly populations in Taiwan. Environ Res 111(8):1156–1163.  https://doi.org/10.1016/j.envres.2011.06.008 CrossRefGoogle Scholar
  31. Liu M, Wang W, Zhou M (2013) Trend analysis on the mortality of cardiovascular diseases from 2004 to 2010 in China. Zhonghua Liu Xing Bing Xue Za Zhi 34(10):985–988 http://www.ncbi.nlm.nih.gov/pubmed/24377992 Google Scholar
  32. Lucas R, Epstein Y, Kjellstrom T (2014) Excessive occupational heat exposure: a significant ergonomic challenge and health risk for current and future workers. Extreme Physiology and Medicine 3.  https://doi.org/10.1186/2046-7648-3-14
  33. Ma W, Chen R, Kan H (2014) Temperature-related mortality in 17 large Chinese cities: how heat and cold affect mortality in China. Environ Res 134:127–133.  https://doi.org/10.1016/j.envres.2014.07.007 CrossRefGoogle Scholar
  34. McMichael A, Wilkinson P, Kovats R, Pattenden S, Hajat S, Armstrong B, Vajanapoom N et al (2008) International study of temperature, heat and urban mortality: the ‘ISOTHURM’ project. Int J Epidemiol 37(5):1121–1131.  https://doi.org/10.1093/ije/dyn086 CrossRefGoogle Scholar
  35. Mostofsky E, Wilker E, Schwartz J, Zanobetti A, Gold D, Wellenius G, Mittleman M (2014) Short-term changes in ambient temperature and risk of ischemic stroke. Cerebrovascular Diseases Extra 4(1):9–18.  https://doi.org/10.1159/000357352 CrossRefGoogle Scholar
  36. O’Neill M, Hajat S, Zanobetti A, Ramirez-Aguilar M, Schwartz J (2005) Impact of control for air pollution and respiratory epidemics on the estimated associations of temperature and daily mortality. Int J Biometeorol 50(2):121–129.  https://doi.org/10.1007/s00484-005-0269-z CrossRefGoogle Scholar
  37. Ou C, Song Y, Yang J, Chau P, Yang L, Chen P, Wong C (2013) Excess winter mortality and cold temperatures in a Subtropical City, Guangzhou, China. Edited by Qinghua Sun. PLoS One 8(10):e77150.  https://doi.org/10.1371/journal.pone.0077150 CrossRefGoogle Scholar
  38. Pepin NC, Seidel DJ (2005) A global comparison of surface and free-air temperatures at high elevations. Journal of Geophysical Research D: Atmospheres 110(3):1–15.  https://doi.org/10.1029/2004JD005047 CrossRefGoogle Scholar
  39. Pinheiro S, Saldiva P, Schwartz J, Zanobetti A (2014) Isolated and synergistic effects of PM10and average temperature on cardiovascular and respiratory mortality. Revista de Saude Publica 48(6):881–888.  https://doi.org/10.1590/S0034-8910.2014048005218 CrossRefGoogle Scholar
  40. Ramanathan V, Feng Y (2009) Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmos Environ 43(1):37–50.  https://doi.org/10.1016/j.atmosenv.2008.09.063 CrossRefGoogle Scholar
  41. REDMET (2017) México City (MX). Bases de Datos - Red de Meteorología y Radiación Solar. 2017. http://www.aire.cdmx.gob.mx/default.php?opc=‘aKBi’
  42. Romero-Lankao P, Qin H, Borbor-Cordova M (2013) Exploration of health risks related to air pollution and temperature in three Latin American cities. Soc Sci Med 83(April):110–118.  https://doi.org/10.1016/j.socscimed.2013.01.009 CrossRefGoogle Scholar
  43. Romieu I, Gouveia N, Cifuentes L, de LA, Junger W, Vera J, Strappa V et al (2012) Multicity study of air pollution and mortality in Latin America (the ESCALA study). Research Report (Health Effects Institute) 171(October):5–86 http://www.ncbi.nlm.nih.gov/pubmed/23311234 Google Scholar
  44. Sanderson M, Arbuthnott K, Kovats S, Hajat S, Falloon P (2017) The use of climate information to estimate future mortality from high ambient temperature: a systematic literature review. Edited by Juan A Añel. PLoS ONE 12:e0180369.  https://doi.org/10.1371/journal.pone.0180369 CrossRefGoogle Scholar
  45. Seltenrich N (2015) Between extremes: health effects of heat and cold. Environ Health Perspect 123:A275–A280.  https://doi.org/10.1289/ehp.123-A275 CrossRefGoogle Scholar
  46. Seposo XT, Dang TN, Honda Y (2016) Effect modification in the temperature extremes by mortality subgroups among the tropical cities of the Philippines. Glob Health Action 9:31500.  https://doi.org/10.3402/gha.v9.31500 CrossRefGoogle Scholar
  47. Son J, Lee J, Anderson G, Bell M (2011) Vulnerability to temperature-related mortality in Seoul, Korea. Environ Res Lett 6(3):034027.  https://doi.org/10.1088/1748-9326/6/3/034027 CrossRefGoogle Scholar
  48. Song X, Wang S, Hu Y, Yue M, Zhang T, Liu Y, Tian J, Shang K (2017) Impact of ambient temperature on morbidity and mortality: an overview of reviews. Sci Total Environ 586(May):241–254.  https://doi.org/10.1016/j.scitotenv.2017.01.212 CrossRefGoogle Scholar
  49. Stewart I, Oke T (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900.  https://doi.org/10.1175/BAMS-D-11-00019.1 CrossRefGoogle Scholar
  50. Tobias A, Armstrong B, Gasparrini A (2017) Brief report: investigating uncertainty in the minimum mortality temperature: methods and application to 52 Spanish cities. Epidemiology (Cambridge, Mass) 28(1):72–76.  https://doi.org/10.1097/EDE.0000000000000567 CrossRefGoogle Scholar
  51. Tong S, Wang X, Yu W, Chen D, Wang X (2014) The impact of heatwaves on mortality in Australia: a multicity study. BMJ Open 4(2):e003579.  https://doi.org/10.1136/bmjopen-2013-003579 CrossRefGoogle Scholar
  52. UNDESA Population Division (2015) Population 2030: demographic challenges and opportunities for sustainable development planning. United Nations. www.unpopulation.org
  53. Wang Z, Liu Y, Hu M, Pan X, Shi J, Chen F, He K, Koutrakis P, Christiani D (2013) Acute health impacts of airborne particles estimated from satellite remote sensing. Environ Int 51(January):150–159.  https://doi.org/10.1016/j.envint.2012.10.011 CrossRefGoogle Scholar
  54. Xinchuang X, Quansheng G, Shanfeng H, Xuezhen Z, Xunliang X, Guang Xu L (2016) Impact of high temperature on the mortality in summer of Wuhan, China. Environ Earth Sci 75(7):543.  https://doi.org/10.1007/s12665-015-5216-7 CrossRefGoogle Scholar
  55. Yu W, Guo Y, Ye X, Wang X, Huang C, Pan X, Tong S (2011) The effect of various temperature indicators on different mortality categories in a Subtropical City of Brisbane, Australia. Sci Total Environ 409(18):3431–3437.  https://doi.org/10.1016/j.scitotenv.2011.05.027 CrossRefGoogle Scholar
  56. Yu W, Mengersen K, Wang X, Ye X, Guo Y, Pan X, Tong S (2012) Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence. Int J Biometeorol 56:569–581.  https://doi.org/10.1007/s00484-011-0497-3 CrossRefGoogle Scholar
  57. Zhang Y, Li S, Pan X, Tong S, Jaakkola J, Gasparrini A, Guo Y, Wang S (2014) The effects of ambient temperature on cerebrovascular mortality: an epidemiologic study in four climatic zones in China. Environmental Health: A Global Access Science Source 13(1):24.  https://doi.org/10.1186/1476-069X-13-24 CrossRefGoogle Scholar

Copyright information

© ISB 2019

Authors and Affiliations

  • Magali Hurtado-Díaz
    • 1
  • Julio C. Cruz
    • 1
  • José L. Texcalac-Sangrador
    • 1
  • Eunice E. Félix-Arellano
    • 1
  • Iván Gutiérrez-Ávila
    • 1
  • Arely A. Briseño-Pérez
    • 2
  • Nenetzen Saavedra-Lara
    • 1
  • Aurelio Tobías
    • 3
  • Horacio Riojas-Rodríguez
    • 1
    Email author
  1. 1.National Institute of Public HealthCuernavacaMexico
  2. 2.Fielding School of Public Health, Center for Health SciencesUniversity of CaliforniaLos AngelesUSA
  3. 3.Institute of Environmental Assessment and Water Research (IDAEA) - Spanish Council for Scientific Research (CSIC)BarcelonaSpain

Personalised recommendations