Advertisement

Neotropical ferns community phenology: climatic triggers in subtropical climate in Araucaria forest

  • Andressa MüllerEmail author
  • Marina Zimmer Correa
  • Camila Storck Führ
  • Thábia Ottília Hofstetter Padoin
  • Daniela Müller de Quevedo
  • Jairo Lizandro Schmitt
Original Paper

Abstract

Climate regulates the fern phenology and climatic triggers influence plants from tropical and subtropical regions differently. Ferns depend on climate to regulate their life cycle, because they do not require animal interaction to reproduce. Through the pioneering study of the phenology of Araucaria forest understory in subtropical climate of Brazil, our main aims were (i) to verify which climatic variables influenced the phenological pattern of the community, (ii) to identify the differences in seasonality of ferns in distinct climatic zones of Brazil, and (iii) to compare the phenological pattern of ferns growing in other subtropical regions of the world. In an Araucaria forest fragment, we monitored the phenology of the fern community (leaf production, leaf senescence, and sporangium formation) over 2 years. At the same time, we collected photoperiod, temperature, and precipitation data. Ferns phenology was classified as continuous, discontinuous, regular, and irregular. Our results showed photoperiod and mean temperature as the best predictors for phenology. The reproductive event was seasonal, and the fern community presented themselves as continuous, irregular (activity index), and regular (intensity index) phenophases. Unlike ferns from tropical regions that generally regulate themselves by the rainfall, some ferns in a non-seasonal environment have seasonal behavior in their phenophases due to the greater amplitude of photoperiod and temperature. The community showed the same pattern of leaf production observed in populations of other subtropical regions in the world. This behavior represented the biological response of the vegetation dynamics in relation to the climatic variability of subtropical environment.

Keywords

Circular statistics GAMLSS Mixed ombrophilous forest Phenological strategy Seasonality Subtropical climate 

Notes

Acknowledgments

The authors thank Feevale University infrastructure.

Funding information

This work was financially supported by the Conselho Nacional de Pesquisa (CNPq process no. 409972/2016-9); scholarships granted by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for AM and TOHP, by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) to MZC, by CNPq to the CSF and JLS is supported by CNPq (PQ-308926/2017-0).

Supplementary material

484_2019_1755_MOESM1_ESM.pdf (108 kb)
ESM 1 Partial residual plots of the significant covariates in the best GAMLSS model to activity index. (PDF 107 kb)
484_2019_1755_MOESM2_ESM.pdf (110 kb)
ESM 2 Partial residual plots of the significant covariates in the best GAMLSS model to intensity index. (PDF 109 kb)

References

  1. Arroyo MTK, Armesto JJ, Villagrán C (1981) Plant phenological patterns in the high andean cordillera of Central Chile. J Ecol 69:205–223CrossRefGoogle Scholar
  2. Barrington DS (1993) Ecological and historical factors in fern biogeography. J Biogeogr 20:275–280.  https://doi.org/10.2307/2845635 CrossRefGoogle Scholar
  3. Bauer D, Goetz MNB, Müller A, Schmitt JL (2012) Fenologia de três espécies de Myrsine L. em floresta secundária semidecídua no sul do Brasil. Rev Árvore 36:859–868.  https://doi.org/10.1590/S0100-67622012000500008 CrossRefGoogle Scholar
  4. Bauer D, Müller A, Goetz MNB, Schmitt JL (2014) Fenologia de Ocotea Pulchella (Nees) Mez, Myrcia Brasiliensis Kiaersk e Psidium Cattleyanum Sabine, em Floresta Semidecídua do sul do Brasil. Rev Flor 44:657–668.  https://doi.org/10.5380/rf.v44i4.31410 Google Scholar
  5. Borchert R, Calle Z, Strahler AH, Baertschi A, Magill RE, Broadhead JS, Kamau J, Njoroge J, Muthuri C (2015) Insolation and photoperiodic control of tree development near the equator. New Phytol 205:7–13.  https://doi.org/10.1111/nph.12981 CrossRefGoogle Scholar
  6. Chiou WL, Lin JC, Wang J (2001) Phenology of Cibotium taiwanense (Dicksoniaceae). Taiwan J Sci 16:209–215Google Scholar
  7. Farias RP, Xavier SRS (2011a) Aspectos fenológicos de Thelypteris interrupta (Willd.) K. Iwats. (Thelypteridaceae) na Floresta Atlântica Nordestina, Paraíba, Brasil. Biotemas 24:91–96.  https://doi.org/10.5007/2175-7925.2011v24n2p91 Google Scholar
  8. Farias RP, Xavier SRS (2011b) Fenologia e sobrevivência de três populações de samambaias em remanescente de Floresta Atlântica Nordestina, Paraíba, Brasil. Biotemas 24:13–20.  https://doi.org/10.5007/2175-7925.2011v24n2p13 Google Scholar
  9. Farias RP, Xavier SRS (2013a) Fenologia foliar de Blechnum serrulatum Rich. (Blechnaceae) em remanescente de floresta atlântica no estado da Paraíba, Brasil. Pesquisas Bot 64:297–306Google Scholar
  10. Farias RP, Xavier SRS (2013b) Aspectos fenológicos de Phlebodium decumanum (Willd.) J.Sm. (Polypodiaceae) em um fragmento urbano de Floresta Atlântica no estado da Paraíba. Revista Nordestina de Biologia 21:71–78Google Scholar
  11. Farias RP, Costa LEN, Silva IAA, Barros ICL (2015) Phenological studies of selected leaf and plant traits of Didymochlaena truncatula (Dryopteridaceae) in a Brazilian submontane tropical rainforest. Nord J Bot 33:249–255.  https://doi.org/10.1111/njb.00656 CrossRefGoogle Scholar
  12. Fournier LA (1974) Un metodo cuantitativo para la medición de caracteristicas fenológicas en arboles. Turrialba 24:422–423Google Scholar
  13. Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. J Ecol 62:881–913CrossRefGoogle Scholar
  14. Garcia LC, Barros FV, Lemos-Filho JP (2017) Environmental drivers on leaf phenology of ironstone outcrops species under seasonal climate. An Acad Bras Ciênc 89:131–143.  https://doi.org/10.1590/0001-3765201720150049 CrossRefGoogle Scholar
  15. Guo L, Dai J, Wang M, Xu J, Luedeling E (2015) Responses of spring phenology in temperate zone trees to climate warming: a case study of apricot flowering in China. Agric For Meteorol 201:1–7.  https://doi.org/10.1016/j.agrformet.2014.10.016 CrossRefGoogle Scholar
  16. Jackson SD (2009) Plant responses to photoperiod. New Phytol 181:517–531.  https://doi.org/10.1111/j.1469-8137.2008.02681.x CrossRefGoogle Scholar
  17. Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462.  https://doi.org/10.1126/science.1186473 CrossRefGoogle Scholar
  18. Kovach WL (2009) Oriana – circular statistics for Windows. Version 3. Kovach Computing Services, Anglesey.Google Scholar
  19. Landi M, Zoccola A, Bacaro G, Angiolini C (2014) Phenology of Dryopteris affinis ssp. affinis and Polystichum aculeatum: modeling relationships to the climatic variables in a Mediterranean area. Plant Spec Biol 29:129–137.  https://doi.org/10.1111/1442-1984.12000 CrossRefGoogle Scholar
  20. Le Stradic S, Buisson E, Fernandes GW, Morellato LPC (2018) Reproductive phenology of two co-occurring Neotropical mountain grasslands. J Veg Sci 29:15–24.  https://doi.org/10.1111/jvs.12596 CrossRefGoogle Scholar
  21. Lee PH, Huang YM, Chiou WL (2008) The phenology of Osmunda claytoniana L. in the Tataka area, central Taiwan. Taiwan J For Sci 23:71–79Google Scholar
  22. Lee PH, Chiou WL, Huang YM (2009) Phenology of three Cyathea (Cyatheaceae) ferns in northern Taiwan. Taiwan J For Sci 24:233–242Google Scholar
  23. Marques MCM (2007) Fenologia no limite sul da região tropical: padrões e algumas interpretações. In: Rego GM, Negrelle RRB, Morellato LPC. Fenologia: ferramenta para conservação, melhoramento e manejo de recursos vegetais arbóreos. Embrapa Florestas, Colombo, pp 101–112Google Scholar
  24. Mehltreter K (2006) Leaf phenology of the climbing fern Lygodium venustum in a semideciduous lowland forest on the Gulf of Mexico. Am Fern J 96:21–30CrossRefGoogle Scholar
  25. Mehltreter K, Garcia-Franco JG (2008) Leaf phenology and trunk growth of the deciduous tree fern Alsophila firma (Baker) D. S. Conant in a lower montane Mexican forest. Am Fern J 98:1–13CrossRefGoogle Scholar
  26. Mendoza I, Peres CA, Morellato LPC (2017) Continental-scale patterns and climatic drivers of fruiting phenology: a quantitative Neotropical review. Glob Planet Chang 148:227–241.  https://doi.org/10.1016/j.gloplacha.2016.12.001 CrossRefGoogle Scholar
  27. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnely A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli O, Peñuelas J, Pirinen P, Remisová V, Scheifinger H, Striz M, Susnik A, Vliet A, Wielgolaski F, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976.  https://doi.org/10.2307/2403858 CrossRefGoogle Scholar
  28. Milton SJ, Moll EJ (1988) Effects of harvesting on frond production of Rumohra adiantiformis (Pteridophyta: Aspidiaceae) in South Africa. J Appl Ecol 25:725–743CrossRefGoogle Scholar
  29. MMA/ SBF (2002) Ministério do Meio Ambiente e Secretaria de Biodiversidade e Florestas. Avaliação e identificação de áreas e ações prioritárias para a conservação, utilização sustentável e repartição dos benefícios da biodiversidade nos biomas brasileiros. MMA/SBF, Brasília, p 404pGoogle Scholar
  30. Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32:811–823CrossRefGoogle Scholar
  31. Morellato LPC, Alberti LF, Hudson IL (2010) Applications of circular statistics in plant phenology: a case studies approach. In Keatley M, Hudson IL (org) Phenological research: methods for environmental and climate change analysis. Dordrecht, the Netherlands: Springer, 357–371.  https://doi.org/10.1007/978-90-481-3335-2_16
  32. Morellato LPC, Camargo MGG, Gressler E (2013) A review of plant phenology in south and Central America. In: Schwartz MD (ed) Phenology: an integrative environmental science. Springer, Dordrecht, pp 91–113.  https://doi.org/10.1007/978-94-007-6925-0
  33. Morellato LPC, Alberton B, Alvarado ST, Borges B, Buisson E, Camargo MGG, Cancian LF, Carstensen DW, Escobar DFE, Leite PTP, Mendoza I, Rocha NMWB, Soares NC, Silva TSF, Staggemeier VG, Streher AS, Vargas BC, Peres CA (2016) Linking plant phenology to conservation biology. Biol Conserv 195:60–72.  https://doi.org/10.1016/j.biocon.2015.12.033 CrossRefGoogle Scholar
  34. Müller A, Schmitt JL (2018) Phenology of Guarea macrophylla Vahl (Meliaceae) in subtropical riparian forest in southern Brazil. Braz J Biol 78:187–194.  https://doi.org/10.1590/1519-6984.14615 CrossRefGoogle Scholar
  35. Müller A, Cunha S, Junges F, Schmitt JL (2016) Efeitos climáticos sobre a fenologia de Lindsaea lancea (L.) Bedd. (Lindsaeaceae) em fragmento de floresta Atlântica no sul do Brasil. Interciencia 41:34–39Google Scholar
  36. Nagano T, Suzuki E (2007) Leaf demography and growth pattern of the tree fern Cyathea spinulosa in Yakushima Island. Tropics 16:47–57.  https://doi.org/10.3759/tropics.16.47 CrossRefGoogle Scholar
  37. Neumann MK, Schneider PH, Schmitt JL (2014) Phenology, caudex growth and age estimation of Cyathea corcovadensis (Raddi) Domin (Cyatheaceae) in a subtropical forest in southern Brazil. Acta Bot Bras 28:17–23.  https://doi.org/10.1590/S0102-33062014000200014 CrossRefGoogle Scholar
  38. Newstrom LE, Frankie GW, Baker HG (1994) A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica 26:141–159CrossRefGoogle Scholar
  39. Oikawa S, Hikosaka K, Hirose T, Shiyomi M, Takahashi S, Hori Y (2004) Cost-benefit relationships in fronds emerging at different times in a deciduous fern, Pteridium aquilinum. Can J Bot 82:521–527.  https://doi.org/10.1139/b04-026 CrossRefGoogle Scholar
  40. Observatório Nacional - ON (2017) Anuário do Observatório Nacional, Seção B – Nascer, Passagem Meridiana e Ocaso do Sol, Lua e Planetas. http://www.on.br/anuario/secao-b_2017.pdf
  41. Opler PA, Frankie GW, Baker HG (1976) Rainfall as a factor in the release, timing and synchronization of anthesis by tropical trees and shrubs. J Biogeogr 3:231–236CrossRefGoogle Scholar
  42. Osada N, Tokuchi N, Takeda H (2012) Continuous and fluctuating leaf phenology of adults and seedlings of a shade-tolerant emergent tree, Dipterocarpus sublamellatus, in Malaysia. Biotropica 44:618–626.  https://doi.org/10.1111/j.1744-7429.2011.00843.x CrossRefGoogle Scholar
  43. Padoin TOH, Müller A, Schmitt JL (2016) Fenologia de Blechnum acutum (Desv.) Mett. (Blechnaceae) em Floresta Atlântica Subtropical. RBGF 9:1644–1656.  https://doi.org/10.5935/1984-2295.20160113 CrossRefGoogle Scholar
  44. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sc 11:1633–1644.  https://doi.org/10.5194/hess-11-1633-2007 CrossRefGoogle Scholar
  45. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.https://www.R-project.org/
  46. Ranal MA (1995) Estabelecimento de pteridófitas em Mata Mesófila Semidecídua do estado de São Paulo. 3. Fenologia e Sobrevivência dos Indivíduos. Rev Bras Biol 55:777–787Google Scholar
  47. Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74.  https://doi.org/10.2307/2260006 CrossRefGoogle Scholar
  48. Reich PB (1995) Phenology of tropical forests: patterns, causes and consequences. Can J. Bot 73:164–174Google Scholar
  49. Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. Appl Stat 54:507–554.  https://doi.org/10.1111/j.1467-9876.2005.00510.x Google Scholar
  50. Rigby RA, Stasinopoulos DM (2007) Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw 23:1–46.  https://doi.org/10.18637/jss.v023.i07 Google Scholar
  51. Schmitt JL, Windisch PG (2006) Phenological aspects of frond production in Alsophila setosa Kaulf. (Cyatheaceae: Pteridophyta) in southern Brazil. Fern Gazette 17:263–270Google Scholar
  52. Schmitt JL, Windisch PG (2007) Estrutura populacional e desenvolvimento da fase esporofítica de Cyathea delgadii Sternb. (Cyatheaceae, Monilophyta) no Sul do Brasil. Acta Bot Bras 21:731–740.  https://doi.org/10.1590/S0102-33062007000300019 CrossRefGoogle Scholar
  53. Schmitt JL, Windisch PG (2012) Caudex growth and phenology of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) in secondary forest, southern Brazil. Braz J Biol 72:397–495.  https://doi.org/10.1590/S1519-69842012000200023 CrossRefGoogle Scholar
  54. Schmitt JL, Schneider PH, Windisch PG (2009) Crescimento do cáudice e fenologia de Dicksonia sellowiana Hook. (Dicksoniaceae) no sul do Brasil. Acta Bot Bras 23:289–291.  https://doi.org/10.1590/S0102-33062009000100030 CrossRefGoogle Scholar
  55. Seghieri J, Floret CH, Pontanier R (1995) Plant phenology in relation to water availability: herbaceous and woody species in the savannas of northern Cameroon. J Trop Ecol 11:237−254CrossRefGoogle Scholar
  56. Sehnem A (1979) Semelhanças e diferenças nas formações florestais do Sul do Brasil. Acta Biol Leopoldensia 1:111−135Google Scholar
  57. Sharpe JM, Mehltreter K (2010) Ecological insights from fern population dynamics. In: Mehltreter VK, Walker LR, Sharpe JM (eds) Fern ecology. Cambrigde University Press, Cambridge, pp 61−110Google Scholar
  58. Silva VL, Schmitt JL (2015) The effects of fragmentation on Araucaria Forest: analysis of the fern and lycophyte communities at sites subject to different edge conditions. Acta Bot Bras 29:223–230.  https://doi.org/10.1590/0102-33062014abb3760 CrossRefGoogle Scholar
  59. Silva IAA, Pereira AFN, Barros ICL (2011) Edge effects on fern community in an Atlantic Forest remnant of Rio Formoso, PE, Brazil. Braz J Biol 71:421–430.  https://doi.org/10.1590/S1519-69842011000300011 CrossRefGoogle Scholar
  60. Silva VL, Mallmann IT, Cunha S, Schmitt JL (2017) Impact of edge effect on the community of epiphytic ferns in Araucaria Forest. RBCIAMB 45:19–32.  https://doi.org/10.5327/Z2176-947820170229 Google Scholar
  61. Smith AR (1972) Comparison of ferns and flowering plant distributions with some evolutionary interpretations for ferns. Biotropica 4:4–9CrossRefGoogle Scholar
  62. Souza KRS, Alves GD, Barros ICL (2007) Fenologia de Anemia tomentosa (Sav.) Sw. var. anthriscifolia (Schrad.) Mickel em fragmento de Floresta Semidecídua, Nazaré da Mata, Pernambuco, Brasil. Rev Bras Biosci 5:486–488Google Scholar
  63. Souza KRMS, Silva IAA, Farias RP, Barros ICL (2013) Fenologia de três espécies de Adiantum L. (Pteridaceae) em fragmento de Floresta Atlântica no estado de Pernambuco, Brasil. Neotrop Biol Conserv 8(2):96–102.  https://doi.org/10.4013/nbc.2013.82.05 CrossRefGoogle Scholar
  64. Vianello RL, Alves AR (2012) Meteorologia Básica e Aplicações. Editora UFV, ViçosaGoogle Scholar
  65. Way DA, Montgomery RA (2015) Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ 38:1725–1736.  https://doi.org/10.1111/pce.12431 CrossRefGoogle Scholar
  66. Windisch PG, Pereira-Noronha M (1983) Notes on the ecology and development of Plagiogyria fialhoi. Am Fern J 73:79–84CrossRefGoogle Scholar
  67. Wrege MS, Fritzsons E, Soares MTS, Souza VA (2015) Variáveis climáticas relacionadas aos serviços ambientais: estudo de caso da araucária. In: Parron LM, Garcia JR, Oliveira EB, Brown GG, Prado RB (eds) Serviços ambientais em sistemas agrícolas e florestais do Bioma Mata Atlântica. Embrapa, Brasília, pp 242–247Google Scholar
  68. Wright SJ, Van Schaik CP (1994) Light and the phenology of tropical trees. Am Nat 143:192–199CrossRefGoogle Scholar

Copyright information

© ISB 2019

Authors and Affiliations

  • Andressa Müller
    • 1
    • 2
    Email author
  • Marina Zimmer Correa
    • 1
  • Camila Storck Führ
    • 1
  • Thábia Ottília Hofstetter Padoin
    • 1
    • 2
  • Daniela Müller de Quevedo
    • 2
    • 3
  • Jairo Lizandro Schmitt
    • 1
    • 2
  1. 1.Instituto de Ciências da Saúde, Laboratório de BotânicaUniversidade FeevaleNovo HamburgoBrazil
  2. 2.Programa de Pós-graduação em Qualidade AmbientalUniversidade FeevaleNovo HamburgoBrazil
  3. 3.Instituto de Ciências Sociais AplicadasUniversidade FeevaleNovo HamburgoBrazil

Personalised recommendations