Advertisement

Estimating late spring frost-induced growth anomalies in European beech forests in Italy

  • M. Bascietto
  • S. BajoccoEmail author
  • C. Ferrara
  • A. Alivernini
  • E. Santangelo
Original Paper

Abstract

Weather extremes and extreme climate events, like late spring frosts, are expected to increase in frequency and duration during the next decades. Although spring phenology of European beech is well adapted to escape freeze damages on longer time scales, the effects of occasional late spring frosts (LSF) are among the main climatic damages to these forests to such an extent that they limit beech distribution and elevation range, especially at its southern margin. The aim of this work was to evaluate the short-term effects of two consecutive LSF events occurred in 2016 and 2017 in Italy on the beech forest vegetation activity. Remotely sensed land surface temperature (LST) data were used to detect the pixels where LSF occurred, while enhanced vegetation index (EVI) data were used to quantify LSF effects by computing a spring vegetation activity anomaly index (sAI). In 2016 and 2017, the LSF covered, respectively, about 29% and 32% of the total Italian beech-dominated area. The two LSF widely differed in their spatial patterns and their effects. In 2016, the pixels belonging to the sAI classes with the highest spring anomalies were also those where prolonged LSF occur, while, in 2017, the pixels belonging to the highest sAI classes were those that underwent the shorter (but probably more intense) LSF events. Under scenarios of increased frequency risk of repeated LSF, the proposed methodology may represent an automatic and low-cost tool both for monitoring and predicting European beech growth patterns.

Keywords

Growth anomaly Enhanced vegetation index Extreme weather events Spring frost Southern Europe 

References

  1. Abadi M, Agarwal A, Barham P et al (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org
  2. Allaire JJ, Chollet F, RStudio, et al (2018) keras: R Interface to Keras. https://cran.r-project.org/web/packages/keras/index.html. Accessed 5 Apr 2019
  3. Bajocco S, Koutsias N, Ricotta C (2017) Linking fire ignitions hotspots and fuel phenology: the importance of being seasonal. Ecol Indic 82:433–440.  https://doi.org/10.1016/j.ecolind.2017.07.027 CrossRefGoogle Scholar
  4. Bajocco S, Ferrara C, Alivernini A, Bascietto M, Ricotta C (2019) Remotely-sensed phenology of Italian forests: going beyond the species. Int J Appl Earth Obs Geoinf 74:314–321.  https://doi.org/10.1016/j.jag.2018.10.003 CrossRefGoogle Scholar
  5. Bascietto M, Bajocco S, Mazzenga F, Matteucci G (2018) Assessing spring frost effects on beech forests in central Apennines from remotely-sensed data. Agric For Meteorol 248:240–250.  https://doi.org/10.1016/j.agrformet.2017.10.007 CrossRefGoogle Scholar
  6. Bresson CC, Vitasse Y, Kremer A, Delzon S (2011) To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? 1164–1174.  https://doi.org/10.1093/treephys/tpr084
  7. Broich M, Huete A, Paget M, Ma X, Tulbure M, Coupe NR, Evans B, Beringer J, Devadas R, Davies K, Held A (2015) A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications. Environ Model Softw 64:191–204.  https://doi.org/10.1016/j.envsoft.2014.11.017 CrossRefGoogle Scholar
  8. Buiteveld J, Vendramin GG, Leonardi S et al (2007) Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. 247:98–106.  https://doi.org/10.1016/j.foreco.2007.04.018
  9. Bussotti F, Pollastrini M, Holland V, Brüggemann W (2015) Functional traits and adaptive capacity of European forests to climate change. Environ Exp Bot 111:91–113.  https://doi.org/10.1016/j.envexpbot.2014.11.006 CrossRefGoogle Scholar
  10. Core Team R (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  11. Didan K (2015a) MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS LP DAACGoogle Scholar
  12. Didan K (2015b) MYD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS LP DAACGoogle Scholar
  13. Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in southern Germany. Eur J For Res 125:249–259.  https://doi.org/10.1007/s10342-005-0098-y CrossRefGoogle Scholar
  14. Duncker PS, Raulund-Rasmussen K, Gundersen P, Katzensteiner K, de Jong J, Ravn HP, Smith M, Eckmüllner O, Spiecker H (2012) How Forest management affects ecosystem services, including timber production and economic return: synergies and trade-offs. Ecol Soc 17.  https://doi.org/10.5751/ES-05066-170450
  15. Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng Z, Janssens IA (2015) Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107.  https://doi.org/10.1038/nature15402 CrossRefGoogle Scholar
  16. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27.  https://doi.org/10.1016/j.rse.2017.06.031 CrossRefGoogle Scholar
  17. Greco S, Infusino M, De Donato C et al (2018) Late spring frost in Mediterranean beech forests: extended crown dieback and short-term effects on moth communities. Forests 9:388.  https://doi.org/10.3390/f9070388 CrossRefGoogle Scholar
  18. Huete A, Didan K, Miura T et al (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213.  https://doi.org/10.1016/S0034-4257(02) CrossRefGoogle Scholar
  19. Huete A, Miura T, Yoshioka H et al (2014) Indices of vegetation activity. In: Biophysical applications of satellite remote sensing. pp 1–41Google Scholar
  20. Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. J Stat Softw 27:1–22.  https://doi.org/10.18637/jss.v027.i03 CrossRefGoogle Scholar
  21. ISPRA Ambiente (2010) La realizzazione in Italia del Progetto Corine Land Cover 2006. Istituto Superiore per la Protezione e la Ricerca AmbientaleGoogle Scholar
  22. Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701.  https://doi.org/10.1016/j.tree.2009.06.007 CrossRefGoogle Scholar
  23. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75.  https://doi.org/10.1007/s004840000066 CrossRefGoogle Scholar
  24. Kramer K, Ducousso A, Kehlet J et al (2017) Chilling and forcing requirements for foliage bud burst of European beech (Fagus sylvatica L.) differ between provenances and are phenotypically plastic. Agric For Meteorol 235:172–181.  https://doi.org/10.1016/j.agrformet.2016.12.002 CrossRefGoogle Scholar
  25. Kreyling J, Thiel D, Nagy L, Jentsch A, Huber G, Konnert M, Beierkuhnlein C (2012) Late frost sensitivity of juvenile Fagus sylvatica L. differs between southern Germany and Bulgaria and depends on preceding air temperature. Eur J For Res 131:717–725.  https://doi.org/10.1007/s10342-011-0544-y CrossRefGoogle Scholar
  26. Lenz A, Hoch G, Vitasse Y, Körner C (2013) European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytol 200:1166–1175.  https://doi.org/10.1111/nph.12452 CrossRefGoogle Scholar
  27. Leuschner C, Meier IC, Hertel D (2006) On the niche breadth of Fagus sylvatica: soil nutrient status in 50 Central European beech stands on a broad range of bedrock types. Ann For Sci 63:355–368.  https://doi.org/10.1051/forest:2006016 CrossRefGoogle Scholar
  28. Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83.  https://doi.org/10.1016/j.jenvman.2014.07.030 CrossRefGoogle Scholar
  29. Maselli F, Cherubini P, Chiesi M, Gilabert MA, Lombardi F, Moreno A, Teobaldelli M, Tognetti R (2014) Start of the dry season as a main determinant of inter-annual Mediterranean forest production variations. Agric For Meteorol 194:197–206.  https://doi.org/10.1016/j.agrformet.2014.04.006 CrossRefGoogle Scholar
  30. Melancon S, Lechowicz MJ (1987) Differences in the damage caused by glaze ice on codominant Acer saccharum and Fagus grandifolia. Can J Bot 65:1157–1159.  https://doi.org/10.1139/b87-161 CrossRefGoogle Scholar
  31. Menzel A, Helm R, Zang C (2015) Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L.) stand in South-Eastern Germany based on repeated digital photographs. Front Plant Sci 6.  https://doi.org/10.3389/fpls.2015.00110
  32. Moritz S (2017) imputeTS: Time Series Missing Value ImputationGoogle Scholar
  33. Müller M (2017) Comparison and confirmation of SNP-bud burst associations in European beech populations in Germany.  https://doi.org/10.1007/s11295-017-1145-9
  34. Nagel TA, Firm D, Rozenbergar D, Kobal M (2016) Patterns and drivers of ice storm damage in temperate forests of Central Europe. Eur J For Res 135:519–530.  https://doi.org/10.1007/s10342-016-0950-2 CrossRefGoogle Scholar
  35. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692.  https://doi.org/10.1016/j.tplants.2010.09.008 CrossRefGoogle Scholar
  36. Ningre F, Colin F (2007) Frost damage on the terminal shoot as a risk factor of fork incidence on common beech (Fagus sylvatica L.). Ann For Sci 64:79–86.  https://doi.org/10.1051/forest:2006091 CrossRefGoogle Scholar
  37. Nolè A, Rita A, Ferrara AMS, Borghetti M (2018) Effects of a large-scale late spring frost on a beech (Fagus sylvatica L.) dominated Mediterranean mountain forest derived from the spatio-temporal variations of NDVI. Ann For Sci 75:83.  https://doi.org/10.1007/s13595-018-0763-1 CrossRefGoogle Scholar
  38. Peña-Gallardo M, Vicente-Serrano S, Camarero J, Gazol A, Sánchez-Salguero R, Domínguez-Castro F, el Kenawy A, Beguería-Portugés S, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar P, Linares J, Martínez del Castillo E, Ribas Matamoros M, García-González I, Silla F, Camisón Á, Génova M, Olano J, Longares L, Hevia A, Galván J (2018) Drought sensitiveness on forest growth in peninsular Spain and the Balearic Islands. Forests 9:524.  https://doi.org/10.3390/f9090524 CrossRefGoogle Scholar
  39. Piovesan G, Biondi F, Filippo AD et al (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob Chang Biol 14:1265–1281.  https://doi.org/10.1111/j.1365-2486.2008.01570.x CrossRefGoogle Scholar
  40. Rojas O, Vrieling A, Rembold F (2011) Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens Environ 115:343–352.  https://doi.org/10.1016/j.rse.2010.09.006 CrossRefGoogle Scholar
  41. Seneviratne SI, Nicholls N, Easterling D et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Dahe Q (eds) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 109–230CrossRefGoogle Scholar
  42. Tuszynski J (2014) caTools: Tools: moving window statistics, GIF, Base64, ROC AUC, etcGoogle Scholar
  43. Urban M, Berger C, Mudau T, Heckel K, Truckenbrodt J, Onyango Odipo V, Smit I, Schmullius C (2018) Surface moisture and vegetation cover analysis for drought monitoring in the southern Kruger National Park Using Sentinel-1, Sentinel-2, and Landsat-8. Remote Sens 10:1482.  https://doi.org/10.3390/rs10091482 CrossRefGoogle Scholar
  44. Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Scheepens JF, Körner C (2013) Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia 171:663–678.  https://doi.org/10.1007/s00442-012-2580-9 CrossRefGoogle Scholar
  45. Vitasse Y, Lenz A, Körner C (2014) The interaction between freezing tolerance and phenology in temperate deciduous trees. Front Plant Sci 5:541.  https://doi.org/10.3389/fpls.2014.00541 CrossRefGoogle Scholar
  46. Wan Z, Hook S, Hulley G (2015) MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day L3 global 1km SIN grid V006. NASA EOSDIS LP DAACGoogle Scholar
  47. Wang C, Li J, Liu Q, Zhong B, Wu S, Xia C (2017) Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index. Sensors 17:1982.  https://doi.org/10.3390/s17091982 CrossRefGoogle Scholar
  48. Weeks BC, Hamburg SP, Vadeboncoeur MA (2009) Ice storm effects on the canopy structure of a northern hardwood forest after 8 years. Can J For Res 39:1475–1483.  https://doi.org/10.1139/X09-076 CrossRefGoogle Scholar
  49. Zhang H, Yuan W, Liu S, Dong W (2015) Divergent responses of leaf phenology to changing temperature among plant species and geographical regions. Ecosphere 6:1–8.  https://doi.org/10.1890/ES15-00223.1 CrossRefGoogle Scholar
  50. Zohner CM, Rockinger A, Renner SS (2018) Increased autumn productivity permits temperate trees to compensate for spring frost damage. New Phytol 221:789–795.  https://doi.org/10.1111/nph.15445 CrossRefGoogle Scholar

Copyright information

© ISB 2019

Authors and Affiliations

  1. 1.Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria (CREA)Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT)MonterotondoItaly
  2. 2.Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria (CREA)Centro di ricerca Agricoltura e Ambiente (CREA-AA)RomeItaly
  3. 3.Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria (CREA)Centro di ricerca Foreste e Legno (CREA-FL)ArezzoItaly

Personalised recommendations