Advertisement

Differences in the impact of heat waves according to urban and peri-urban factors in Madrid

  • J. A. López-Bueno
  • J. DíazEmail author
  • C. Linares
Article

Abstract

Aside from climatic factors, the impact of heat waves on mortality depends on the demographic and socio-economic structure of the population as well as variables relating to local housing. Hence, this study’s main aim was to ascertain whether there might be a differential impact of heat waves on daily mortality by area of residence. The study is a time-series analysis (2000–2009) of daily mortality and minimum and maximum daily temperatures (°C) in five geographical areas of the Madrid region. The impact of such waves on heat-related mortality due to natural causes (ICD-10: A00- R99), circulatory causes (ICD-10: I00-I99) and respiratory causes (ICD-10: J00-J99) was obtained by calculating the relative risk (RR) and attributable risk (AR), using GLM models with the Poisson link and controlling for trend, seasonalities and the autoregressive nature of the series. Furthermore, we also evaluated other external variables, such as the percentage of the population aged over 65 years and the percentage of old housing. No heat-related mortality threshold temperature with statistical significance was detected in the northern and eastern areas. While the threshold temperatures in the central and southern areas were very similar and close to the 90th percentile, the threshold in the western area corresponded to the 97th percentile. Attributable mortality proved to be highest in the central area with 85 heat wave-related deaths per annum. External factors found to influence the impact of heat on mortality in Madrid were the size of the population aged over 65 years and the age of residential housing. Demographic structure and the percentage of old housing play a key role in modulating the impact of heat waves. This study concludes that the areas in which heat acts earliest are those having a higher degree of population ageing.

Keywords

Heat waves Urban Peri-urban factors Housing 

Notes

Acknowledgement of funding

The authors gratefully acknowledge Project ENPY 1133/16 Project ENPY 376/18 and Project ENPY 107/18 grants from the Carlos III Institute of Health.

References

  1. Alberdi J, Diaz J (1997) Modelización de la mortalidad diaria en la Comunidad Autónoma de Madrid (1986-1991). Gac Sanit 11(1):9–15 https://www.sciencedirect.com/science/article/pii/S0213911197712664 CrossRefGoogle Scholar
  2. Alberdi JC, Díaz J, Montero C, Mirón I (1998) Daily mortality in Madrid community 1986-1992: relationship with meteorological variables. Eur J Epidemiol 14:571–578 https://link.springer.com/article/10.1023/A:1007498305075 CrossRefGoogle Scholar
  3. Barceló MA, Varga D, Tobias A, Diaz J, Linares C, Saez M (2016) Long term effects of traffic noise on mortality in the city of Barcelona, 2004-2007. Environ Res 147:193–206.  https://doi.org/10.1016/j.envres.2016.02.010 CrossRefGoogle Scholar
  4. Barrett J (2015) Increased minimum mortality temperature in France: data suggest humans are adapting to climate change. Environ Health Perspect 123(7):A 184 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492254/ CrossRefGoogle Scholar
  5. Bittner MI, Matthies EF, Dalbokova D, Menne B (2014) Are European countries prepared for the next big heat-wave? Eur J Pub Health 24(4):615–619.  https://doi.org/10.1093/eurpub/ckt121 CrossRefGoogle Scholar
  6. Bobb JF, Peng RD, Bell ML, Dominici F (2014) Heat-related mortality and adaptation to heat in the United States. Environ Health Perspect 122(8):811–816CrossRefGoogle Scholar
  7. Breitner S, Wolf K, Devlin RB, Diaz-Sanchez D, Peters A, Schneider A (2014) Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: a time-series analysis. Sci Total Environ 485-486:49–61CrossRefGoogle Scholar
  8. Brunetti M, Maugeri M, Nanni T (2000) Variations of temperature and precipitation in Italy from 1866 to 1995. Theor Appl Climatol 65(3–4):165–174.  https://doi.org/10.1007/s007040070041 CrossRefGoogle Scholar
  9. Burkart K, Meier F, Schneider A, Breitner S, Canário P, Alcoforado MJ, Scherer D, Endlicher W (2016) Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): evidence from Lisbon, Portugal. Environ Health Perspect 124(7):927–934CrossRefGoogle Scholar
  10. Byford T (2014) Protecting health in Europe from climate change. Int J Environ Stud 71(3):410–411.  https://doi.org/10.1080/00207233.2014.914678 Google Scholar
  11. Carmona R, Linares C, Ortiz C, Mirón IJ, Luna MY, Díaz J (2017) Spatial variability in threshold temperatures of heat wave mortality: impact assessment on prevention plans. Int J Environ Health Res 3123:1–13.  https://doi.org/10.1080/09603123.2017.1379056 Google Scholar
  12. Carson C, Hajat S, Armstrong B, Wilkinson P (2006) Declining vulnerability to temperature-related mortality in London over the 20th century. Am J Epidemiol 164(1):77–84CrossRefGoogle Scholar
  13. Consejería de Medio Ambiente de la Comunidad de Madrid (2006) Comunidad de Madrid, Administración Local y Ordenación del Territorio. https://gestiona.madrid.org/azul_internet/html/web/3_1.htm?ESTADO_MENU=3_1
  14. Coste J, Spira A (1991) Le proportion de cas attributable en Santé Publique: definition, estimation et interpretation. Rev Epidemiol Sante Publique 51:399–411Google Scholar
  15. Coughlin S, Benichou J, Douglas W (1996) Estimación del riesgo atribuible en los estudios de casos y controles. Bol Oficina Sanit Panam 121(2):143–185Google Scholar
  16. Díaz J, Linares C (2008) Temperaturas extremadamente elevadas y su impacto sobre la mortalidad diaria de acuerdo a diferentes grupos de edad. Gac Sanit 22:115–119 https://www.sciencedirect.com/science/article/pii/S0213911108712172 CrossRefGoogle Scholar
  17. Díaz J, Jordán A, García R, López C, Alberdi JC, Hernández E, Otero A (2002) Heat waves in Madrid 1986-1997: effects on the health of the elderly. Int Arch Occup Environ Health 75(3):163–170.  https://doi.org/10.1007/s00420-001-0290-4 CrossRefGoogle Scholar
  18. Díaz J, García R, López C, Linares C, Tobías A, Prieto L (2005) Mortality impact of extreme winter temperatures. Int J Biometeorol 49(3):179–183.  https://doi.org/10.1007/s00484-004-0224-4 CrossRefGoogle Scholar
  19. Díaz J, Linares C, Tobías A (2006) Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45-64 age-group. Int J Biometeorol 50(6):342–348.  https://doi.org/10.1007/s00484-006-0033-z CrossRefGoogle Scholar
  20. Díaz J, Carmona R, Linares C (2015a) Temperaturas umbrales de disparo de la mortalidad atribuible al calor en España en el periodo 2000–2009. Instituto de Salud Carlos III, Escuela Nacional de Sanidad, MadridGoogle Scholar
  21. Díaz J, Carmona R, Mirón IJ, Ortiz C, León I, Linares C (2015b) Geographical variation in relative risks associated with heat: update of Spain’s heat wave prevention plan. Environ Int 85:273–283.  https://doi.org/10.1016/j.envint.2015.09.022 CrossRefGoogle Scholar
  22. Díaz J, Carmona R, Mirón IJ, Luna MY, Linares C (2018) Time trend in the impact of heat waves on daily mortality in Spain for a period of over thirty years (1983-2013). Environ Int 116:10–17CrossRefGoogle Scholar
  23. Fernández F, Allende F, Alcaide J, Rasilla D, Martilli A, Alcaide J (2016) Estudio de detalle del clima urbano de Madrid. Ayuntamiento de Madrid, Área de Gobierno de Medio Ambiente y Movilidad, Dirección General de Sostenibilidad y Control Ambiental - Universidad Autónoma de Madrid, Departamento de Geografía, Madrid http://www.madrid.es/UnidadesDescentralizadas/Sostenibilidad/EspeInf/EnergiayCC/04CambioClimatico/4cEstuClimaUrb/Ficheros/EstuClimaUrbaMadWeb2016.pdf Google Scholar
  24. Gosling SN, McGregor GR, Lowe JA (2009) Climate change and heat-related mortality in six cities part 2: climate model evaluation and projected impacts from changes in the mean and variability of temperature with climate change. Int J Biometeorol 53(1):31–51.  https://doi.org/10.1007/s00484-008-0189-9 CrossRefGoogle Scholar
  25. Guo Y, Gasparrini A, Armstrong B, Li S, Tobias A, Lavigne E, Stagliorio Z (2014) Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology 25(6):781–789 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180721/ CrossRefGoogle Scholar
  26. Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E, Coelho MSZS et al (2017) Heat wave and mortality: a multicountry, multicommunity study. Environ Health Perspect 125(8):087006.  https://doi.org/10.1289/EHP1026 CrossRefGoogle Scholar
  27. Guo Y, Gasparrini A, Li S, Sera F, Vicedo-Cabrera AM, de Sousa Zanotti Stagliorio Coelho M et al (2018) Quantifying excess deaths related to heatwaves under climate change scenarios: a multicountry time series modelling study. PLoS Med 15(7):e1002629CrossRefGoogle Scholar
  28. INE (2014) Proyección de la Población de España 2014-2064: Notas de prensa. Instituto Nacional de Estadística (INE), 1–9. Retrieved from: http://www.ine.es/prensa/np870.pdf
  29. INE (2018a) Estadística del Padrón Continuo a 1 de enero de 2011. Datos por municipios. Instituto Nacional de Estadística, España Retrieved from: http://www.ine.es/jaxi/Tabla.htm?path=/t20/e245/p05/a2011/l0/&file=00028001.px&L=0 Google Scholar
  30. INE (2018b) Cifras oficiales de población resultantes de la revisión del Padrón municipal a 1 de enero. Instituto Nacional de Estadística, España http://www.ine.es/jaxiT3/Tabla.htm?t=2881&L=0 Google Scholar
  31. Instituto Regional de Estadística (2006) Edificios. Indicadores Municipales de la Comunidad de Madrid. Madrid: http://www.madrid.org/iestadis/fijas/estructu/general/territorio/iindimuni06.htm
  32. IPCC (2013) Climate change 2013: the physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. http://www.climatechange2013.org/
  33. Jimenez E, Linares C, Martinez D, Diaz J (2011) Particulate air pollution and short-term mortality due to specific causes among the elderly in Madrid (Spain): seasonal differences. Int J Environ Health Res 21(5):372–390.  https://doi.org/10.1080/09603123.2011.560251 CrossRefGoogle Scholar
  34. Kent ST, McClure LA, Zaitchik BZ, Smith TT, Gohlke JM (2014) Heat waves and health outcomes in Alabama (USA): the importance of heat wave definition. Environ Health Perspect 122(2):151–159 Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914868/ CrossRefGoogle Scholar
  35. Khaw K (1995) Temperature and cardiovascular mortality. Lancet 345:337–338 https://www.sciencedirect.com/science/article/pii/S0140673695903364 CrossRefGoogle Scholar
  36. Konkel L (2014) Learning to take the heat declines in U.S. Heat-related mortality Americans. Environ Health Perspect 122(8):A 202.  https://doi.org/10.1289/ehp.1307392.2 CrossRefGoogle Scholar
  37. Lee C, Sheridan SC (2018) A new approach to modeling temperature-related mortality: non-linear autoregressive models with exogenous input. Environ Res 164:53–64.  https://doi.org/10.1016/j.envres.2018.02.020 CrossRefGoogle Scholar
  38. Li M, Gu S, Bi P, Yang J, Liu Q (2015) Heat waves and morbidity: current knowledge and further direction: a comprehensive literature review. Int J Environ Res Public Health 12(5):5256–5283. Retrieved from.  https://doi.org/10.3390/ijerph120505256 CrossRefGoogle Scholar
  39. Linares C, Carmona R, Ortiz CD (2017) Temperaturas extremas y Salud. Editorial La Catarata, MadridGoogle Scholar
  40. Ma T, Xiong J, Lian Z (2017) A human thermoregulation model for the Chinese elderly. J Therm Biol 70:2–14.  https://doi.org/10.1016/j.jtherbio.2017.08.002 CrossRefGoogle Scholar
  41. Martínez F, Simón-Soria F, López-Abente G (2004) Valoración del impacto de la ola de calor del verano de 2003 sobre la mortalidad. Gac Sanit 18(Supl 1):250–258 http://www.gacetasanitaria.org/es/valoracion-del-impacto-ola-calor/articulo/13062535/ CrossRefGoogle Scholar
  42. Mayrhuber EA, Dückers MLA, Wallner P, Arnberger A, Allex B, Wiesböck L et al (2018) Vulnerability to heatwaves and implications for public health interventions—a scoping review. Environ Res 166:42–54CrossRefGoogle Scholar
  43. Milojevic A, Armstrong BG, Gasparrini A, Bohnenstengel SI, Barratt B, Wilkinson P (2016) Methods to estimate acclimatization to urban heat island effects on heat- and cold-related mortality. Environ Health Perspect 124(7):1016–1022CrossRefGoogle Scholar
  44. Mirón IJ, Montero JC, Criado-Álvarez JJ, Gutierrex G, Paredes D, Mayoral Arenas S, Linares C (2006) Tratamiento y estudio de series de temperatura para su aplicación en salud pública. El caso de Castilla La Mancha. Rev Esp Salud Pública 80(2):113–124 http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1135-57272006000200002 Google Scholar
  45. Montero JC, Mirón IJ, Criado JJ, Linares C, Díaz J (2010) Comparison between two methods of defining heat waves: a retrospective study in Castile-La Mancha (Spain). Sci Total Environ 408(7):1544–1550.  https://doi.org/10.1016/j.scitotenv.2010.01.013 CrossRefGoogle Scholar
  46. Montero JC, Mirón IJ, Criado JJ, Linares C, Díaz J (2012) Influence of local factors in the relationship between mortality and heat waves: Castile-La Mancha (1975-2003). Sci Total Environ 414:73–80.  https://doi.org/10.1016/j.scitotenv.2011.10.009 CrossRefGoogle Scholar
  47. Nicholls N, Lavery B (1996) Recent apparent changes in relationships between the El Niño-southern oscillation and Australian rainfall and temperature. Geophys Res Lett 23:3357–3360CrossRefGoogle Scholar
  48. Parodi S, Vercelli M, Garrone E, Fontana V, Izzotti A (2005) Ozone air pollution and daily mortality in Genoa, Italy between 1993 and 1996. Public Health 119(9):844–850CrossRefGoogle Scholar
  49. Ren C, Williams GM, Tong S (2006) Does particulate matter modify the association between temperature and cardiorespiratory diseases? Environ Health Perspect 114(11):1690–1696CrossRefGoogle Scholar
  50. Robine JM, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel JP, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol 331(2):171–178.  https://doi.org/10.1016/j.crvi.2007.12.001 CrossRefGoogle Scholar
  51. Roldán E, Gómez M, Pino MR, Esteban M, Díaz J (2011) Determinación de zonas isoclimáticas y selección de estaciones meteorológicas representativas en Aragón como base para la estimación del impacto del cambio climático sobre la posible relación entre la mortalidad y temperatura. Rev Esp Salud Pública 85:603–610CrossRefGoogle Scholar
  52. Sánchez-Martínez G, Díaz J, Linares C, Nieuwenhuyse A, Hooyberghs H, Lauwaet D, De Ridder K, Carmona R, Ortiz C, Kendrovski V, Aerts R, Dunbar M (2018) Heat and health under climate change in Antwerp: projected impacts and implications for prevention. Environ Int 111:135–143CrossRefGoogle Scholar
  53. Santos E, de Lara P (2008) Método de regionalización de temperaturas basado en análogos. Explicación y validación. Agencia Estatal de Meteorología. http://www.aemet.es/documentos/es/idi/clima/escenarios_CC/Metodo_regionalizacion_temperatura.pdf
  54. Sanz A, Gómez G, Sánchez-Guevara C, Núñez M (2016) Estudio técnico sobre pobreza energética en la ciudad de Madrid. Ecologistas en Acción, Madrid http://www.madrid.es/UnidadesDescentralizadas/Consumo/NuevaWeb/pobreza%20energ%C3%A9tica/Estudio%20Pobreza%20energ%C3%A9tica%204%20febrero%202017.pdf Google Scholar
  55. Sartor F, Demuth C, Snacken R, Walckiers D (1997) Mortality in the elderly and ambient ozone concentration during the hot summer, 1994, in Belgium. Environ Res 72(2):109–117CrossRefGoogle Scholar
  56. Schär C, Vidale PL, Lüthi D, Häberli C, Liniger MA, Appenseller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(6972):332. https://www.nature.com/articles/nature02300–336CrossRefGoogle Scholar
  57. Takeda R, Imai D, Suzuki A, Ota A, Naghavi N, Yamashina Y, Okazaki K (2016) Lower thermal sensation in normothermic and mildly hyperthermic older adults. Eur J Appl Physiol 116(5):975–984.  https://doi.org/10.1007/s00421-016-3364-4 CrossRefGoogle Scholar
  58. Tobías A, Recio A, Díaz J, Linares C (2015) Health impact assessment of traffic noise. Environ Res 137:136–140CrossRefGoogle Scholar
  59. Vandentorren S, Bretin P, Zeghnoun A, Mandereau-Bruno L, Croisier A, Cochet C, Ribéron J, Siberan I, Declercq B, Ledrans M (2006) August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur J Pub Health 16(6):583–591CrossRefGoogle Scholar
  60. Vodonos A, Friger M, Katra I, Krasnov H, Zahger D, Schwartz J, Novack V (2015) Individual effect modifiers of dust exposure effect on cardiovascular morbidity. PLoS One 10(9):1–12.  https://doi.org/10.1371/journal.pone.0137714 CrossRefGoogle Scholar
  61. WHO (2008) Protecting health in Europe from climate change. Copenhagen. http://www.euro.who.int/__data/assets/pdf_file/0016/74401/E91865.pdf?ua=1
  62. Wilby R, Jones P, Lister D (2011) Decadal variations in the nocturnal heat island of London. Weather 66(3):59–64CrossRefGoogle Scholar
  63. Xu Y, Dadvand P, Barrera-Gomez J, Sartini C, Mari-Dell’Olmo M, Borrell C, Medina-Ramón M, Sunyer J, Basagaña X (2013) Differences on the effect of heat waves on mortality by sociodemographic and urban landscape characteristics. J Epidemiol Community Health 67(6):519–525CrossRefGoogle Scholar

Copyright information

© ISB 2019

Authors and Affiliations

  1. 1.National School of Public HealthCarlos III Institute of HealthMadridSpain
  2. 2.Escuela Nacional de SanidadInstituto de Salud Carlos IIIMadridSpain

Personalised recommendations