International Journal of Biometeorology

, Volume 63, Issue 11, pp 1507–1516 | Cite as

Valuation of the human thermal discomfort index for the five Brazilian regions in the period of El Niño-Southern Oscillation (ENSO)

  • Fernanda Rodrigues Diniz
  • Clara Miho Narukawa Iwabe
  • Marina Piacenti-SilvaEmail author
Special Issue: Brazilian Congress - Jaboticabal 2017


Brazil is an extensive country with five administrative regions that have different climates, mainly due to their geographic locations. The El Niño-Southern Oscillation influences the regime of temperature and precipitation of the Brazilian regions, which can directly affect the thermal discomfort of the population. The objective of this study was to evaluate the human thermal discomfort index (HDI) in the five regions of Brazil for El Niño, La Niña, and neutral years from 1979 to 2017, as well as the influence of the degree of intensity of the Pacific Ocean anomaly in the thermal conditions of the Brazilian regions. Monthly data on air temperature and dewpoint temperature obtained from the ERA-Interim reanalysis were used. The HDI was calculated using specific equations. The results were analyzed by means of composition fields. From the results, it was possible to conclude that the El Niño and La Niña phenomena influence the HDI of the Brazilian regions. El Niño increases the discomfort due to the heat and the La Niña causes them to decrease. This study is important since these phenomena, by influencing thermal conditions, directly affect the well-being and health of the Brazilian population.


Human thermal discomfort El Niño-Southern Oscillation Brazil 



Partial data of the present work were previously published in the VII Brazilian Congress of the Biometeorology, Ambience, Behavior and Animal Welfare (VII CBBiomet).

Funding information

This research was supported by the funding agency FAPESP (Process 2015/18613-4 and 2015/22864-2).

Supplementary material

484_2018_1622_MOESM1_ESM.docx (2.3 mb)
ESM 1 (DOCX 2318 kb)


  1. Alves LM (2009) Clima da região Centro-Oeste do Brasil. In: Tempo e Clima no Brasil. Cavalcanti IFA, Ferreira NJ, da Silva MGAJ, Silva Dias MAF. Oficina de textos, São Paulo, pp 235–241Google Scholar
  2. Azevedo PV, Bezerra PTC, Leitão MMVBR, Santos CAC (2015) Characterization of human thermal comfort in urban areas of Brazilian semiarid. Rev Bras Meteorol 30(4):371–380CrossRefGoogle Scholar
  3. Azevedo PV, Bezerra PTC, Leitão MMVBR, Santos CAC (2017) Thermal comfort level assessment in urban area of Petrolina-PE County, Brazil. Rev Bras Meteorol 32:555–563CrossRefGoogle Scholar
  4. Batista RJR, Gonçalves FLT, Rocha RP (2016) Present climate and future projections of the thermal comfort index for the metropolitan region of São Paulo, Brazil. Clim Chang 137:439–454. CrossRefGoogle Scholar
  5. Berlato MA, Farenzena H, Fontana DC (2005) Association between El Niño Southern Oscillation and corn yield in Rio Grande do Sul State. Pesq Agrop Bras 40(5):423–432CrossRefGoogle Scholar
  6. Berrisford P, Kallberg P, Kobayashi S, Dee D, Uppala S, Simmons AJ, Poli P, Sato H (2011) Atmospheric conservation properties in ERA-Interim. Q J R Meteorol Soc 137:1381–1399. CrossRefGoogle Scholar
  7. Bröde P, Kruger EL, Rossi FA, Fiala D (2012) Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI-a case study in Southern Brazil. Int J Biometeorol 56(3):471–480. CrossRefGoogle Scholar
  8. Buriol GA, Estefanel V, Righi EZ, Bressan VC (2015) Conforto térmico para os seres humanos nas condições de ambiente natural em Santa Maria, RS, Brasil. Ciênc Rural 45(2):223–230CrossRefGoogle Scholar
  9. Camargo MG, Furlan MMDP (2011) Resposta fisiológica do corpo às temperaturas elevadas: exercício, extremos de temperatura e doenças térmicas. Rev Saúde Pesq 4(2):278–288Google Scholar
  10. Collins M, An S, Cai W, Ganachaud A, Guilyardi E, Jin F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397. CrossRefGoogle Scholar
  11. Dahiru T (2008) P – value, a true test of statistical significance? A cautionary note. Ann Ib Postgrad Med 6(1):21–26Google Scholar
  12. Davey MK, Brookshaw A, Ineson S (2014) The probability of the impact of ENSO on precipitation and near-surface temperature. Clim Risk Manag 1:5–24CrossRefGoogle Scholar
  13. Grimm AM (2009) Clima da região Sul do Brasil. In: Cavalcanti IFA, Ferreira NJ, da Silva MGAJ, Silva Dias MAF (eds) Tempo e Clima no Brasil. Oficina de textos, São Paulo, pp 259–275Google Scholar
  14. Grimm AM, Ferraz SET, Gomes J (1998) Precipitation anomalies in southern Brazil associated with El Niño and La Niña events. J Clim 11:2863–2880CrossRefGoogle Scholar
  15. IBGE (2010) Instituto Brasileiro de Geografía e Estatística. Geociências. Accessed 5 June 2017
  16. Kane RP (1998) Prediction of Droughts in North-East Brazil: role of ENSO and Use of Periodicities. Int J Climatol 17:655–665CrossRefGoogle Scholar
  17. Kayano MT, Andreoli RV (2009) Clima da região Nordeste do Brasil. In: Cavalcanti IFA, Ferreira NJ, da Silva MGAJ, Silva Dias MAF (eds) Tempo e Clima no Brasil. Oficina de textos, São Paulo, pp 213–233Google Scholar
  18. Marengo JA, Nobre CA (2009) Clima da região Amazônica. In: Tempo e Clima no Brasil. Cavalcanti IFA, Ferreira NJ, da Silva MGAJ, Silva Dias MAF (eds). Oficina de textos, São Paulo 197–212.Google Scholar
  19. Minuzzi RB, Sediyama GC, Costa JMN, Vianello RL(2006) Influência do fenômeno climático el niño no período chuvoso da região sudeste do Brasil. Geografia (Londrina) 15(2)Google Scholar
  20. Monteiro LM, Alucci MP (2012) Adaptative comfort model for on-site evaluation of urban open spaces. Ambient Constr 12(1):61–79CrossRefGoogle Scholar
  21. Nedel AS, Gonçalves FLT, Macedo-Junior C, Cardoso MRA (2015) Climatology of the human thermal comfort on Sao Paulo Metropolitan area, Brazil: indoors and outdoors. Rev Bras Geofis 33(2):185–204Google Scholar
  22. Oliveira LMF, Junior TY, Ferreira E, Carvalho LG, Silva MP (2006) Zoneamento bioclimático da região Sudeste do Brasil para o conforto térmico animal e humano. Eng Agríc Jaboticabal 26(3):823–831CrossRefGoogle Scholar
  23. Ono HSP, Kawamura T (1991) Sensible climates in monsoon Asia. Int J Biometeorol 35(XX):39–47CrossRefGoogle Scholar
  24. Power SB, Delage FP (2018) El Niño–southern oscillation and associated climatic conditions around the world during the latter half of the twenty-first century. J Clim 31:6189–6207CrossRefGoogle Scholar
  25. Reboita MS, Gan MA, Rocha RP, Ambrizzi T (2010) Precipitation regimes in South America: a bibliography review. Rev Bras Meteorol 25:185–204CrossRefGoogle Scholar
  26. Romanovsky AA (2014) Skin temperature: its role in thermoregulation. Acta Physiol (Oxf) 210(3):498–507. CrossRefGoogle Scholar
  27. Sette MD, Ribeiro H (2011) Interações entre o clima, o tempo e a saúde humana. Rev Saúde Meio Ambiente Sustentabilidade 6(2):37–51Google Scholar
  28. Silva DA (2012) A função da precipitação no conforto do clima urbano da cidade de Manaus. Rev Geonorte Edição Especial 2 2(5):22–40Google Scholar
  29. Silva EN, Ribeiro H (2006) Alterações da temperatura em ambientes externos de favela e desconforto térmico. Rev Saúde Pública 40:663–670CrossRefGoogle Scholar
  30. Vanos JK, Warland JS, Gillespie TJ, Kenny NA (2010) Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int J Biometeorol 54(4):319–334. CrossRefGoogle Scholar
  31. Vemado F, Filho AJP (2016) Severe weather caused by heat island and sea breeze effects in the metropolitan area of São Paulo, Brazil. Adv Meteorol 2016:1–13CrossRefGoogle Scholar
  32. World Health Organization (2010) Extreme weather and climate events and public health responses. Meeting report. Bonn, GermanyGoogle Scholar
  33. Yan YY, Oliver JE (1996) The clo: a utilitarian unit to measure weather/climate comfort. Int J Climatol 16:1045–1056CrossRefGoogle Scholar
  34. Yeh SW, Cai W, Min S, McPhaden MJ, Dommenget D, Dewitte B, Collins M, Ashok K, An S, Yim B, Kug J (2018) ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev Geophys 56:185–206CrossRefGoogle Scholar

Copyright information

© ISB 2018

Authors and Affiliations

  1. 1.Department of PhysicsSão Paulo State University (UNESP), School of SciencesBauruBrazil
  2. 2.Center of Meteorology (IPMet)São Paulo State University (UNESP)BauruBrazil

Personalised recommendations