Advertisement

Mud therapy and skin microbiome: a review

  • Michele Antonelli
  • Davide Donelli
Review Paper

Abstract

Recent findings highlight the role of skin microbiome in modulating immune function and inflammatory response. This systematic review aims to investigate the effects of muds, already used for the treatment of several rheumatic and dermatologic conditions, on skin microbiome. Medline via PubMed, Embase, Cochrane Library, and Google Scholar were searched for articles about the effects of therapeutic muds on microorganisms of skin microbiome. Five studies were included in the review and critically appraised. Limited data suggest that muds have various properties that may explain their action on skin microbiome, with different effects on commensal and pathogenic microorganisms. Further investigation on this topic is needed to better characterize the effects of different muds on skin microbiome, thus possibly extending their indications.

Keywords

Mud Peloid Balneotherapy Skin microbiome Immune system Inflammation 

References

  1. Abazari M, Zarrini G, Rasooli I (2013) Antimicrobial potentials of Leptolyngbya sp and its synergistic effects with antibiotics. Jundishapur J Microbiol 6(5).  https://doi.org/10.5812/jjm.6536
  2. Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76(3):667–684.  https://doi.org/10.1128/MMBR.00007-12 CrossRefGoogle Scholar
  3. Andreoli C, Rascio N (1975) The algal flora in the thermal baths of Montegrotto Terme (Padua). Its distribution over one-year period. Int Rev Gesamten Hydrobiol 60:857–871.  https://doi.org/10.1002/iroh.19750600606 CrossRefGoogle Scholar
  4. Antonelli M, Donelli D (2018) Effects of balneotherapy and spa therapy on levels of cortisol as a stress biomarker: a systematic review. Int J Biometeorol:1–12.  https://doi.org/10.1007/s00484-018-1504-8
  5. Antonelli M, Donelli D, Fioravanti A (2018) Effects of balneotherapy and spa therapy on quality of life of patients with knee osteoarthritis: a systematic review and meta-analysis. Rheumatol Int:1–18.  https://doi.org/10.1007/s00296-018-4081-6
  6. Aries MF, Hernandez-Pigeon H, Vaissière C, Delga H, Caruana A, Lévêque M, Bourrain M, Ravard Helffer K, Chol B, Nguyen T, Bessou-Touya S, Castex-Rizzi N (2016) Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models. Clin Cosmet Investig Dermatol 9:421.  https://doi.org/10.2147/CCID.S113180 CrossRefGoogle Scholar
  7. Basualdo JA, Schell CM, Sparo MD, Grenóvero MS, Giacomino MI, Belderrain AR, Monasterio A, De Michele D, De Luca MM (2011) Estudio de la actividad antimicrobiana del fango termal de Copahue (Neuquén, Argentina). Cienc Docencia Tecnol 43:217–235Google Scholar
  8. Bazzichi L, Da Valle Y, Rossi A, Giacomelli C, Sernissi F, Giannaccini G, Betti L, Ciregia F, Giusti L, Scarpellini P, Dell’Osso L, Marazziti D, Bombardieri S, Lucacchini A (2013) A multidisciplinary approach to study the effects of balneotherapy and mud-bath therapy treatments on fibromyalgia. Clin Exp Rheumatol 31(6 Suppl 79):111–120Google Scholar
  9. Behroozian S, Svensson SL, Davies J (2016) Kisameet clay exhibits potent antibacterial activity against the ESKAPE pathogens. MBio 7(1):e01842–e01815 http://mbio.asm.org/content/7/1/e01842-15 CrossRefGoogle Scholar
  10. Berrini CC, De Appolonia F, Valle LD, Komárek J, Andreoli C (2004) Morphological and molecular characterization of a thermophilic cyanobacterium (Oscillatoriales) from the Euganean Thermal Springs (Padua, Italy). Algol Stud 113(1):73–85.  https://doi.org/10.1127/1864-1318/2004/0113-0073 CrossRefGoogle Scholar
  11. Boldyreva OA (2015) The influence of balneo-and peloid therapy on the characteristics of the hormonal regulation in the women presenting with bacterial vaginosis. Vopr Kurortol Fizioter Lech Fiz Kult 92(3):22–26CrossRefGoogle Scholar
  12. Burns EM, Yusuf N (2014) Toll-like receptors and skin cancer. Front Immunol 5:135.  https://doi.org/10.3389/fimmu.2014.00135 CrossRefGoogle Scholar
  13. Carretero MI (2002) Clay minerals and their beneficial effects upon human health. A review. Appl Clay Sci 21(3–4):155–163.  https://doi.org/10.1016/S0169-1317(01)00085-0 CrossRefGoogle Scholar
  14. Carretero MI, Lagaly G (2007) Clays and health: an introduction. Appl Clay Sci 36(1–3):1–3.  https://doi.org/10.1016/j.clay.2006.09.001 Google Scholar
  15. Centini M, Tredici MR, Biondi N, Buonocore A, Maffei Facino R, Anselmi C (2015) Thermal mud maturation: organic matter and biological activity. Int J Cosmet Sci 37(3):339–347.  https://doi.org/10.1111/ics.12204 CrossRefGoogle Scholar
  16. Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc 6(3):170–174). Elsevier.  https://doi.org/10.1046/j.0022-202x.2001.00043.x CrossRefGoogle Scholar
  17. Contreras S, Sagory-Zalkind P, Blanquart H, Iltis A, Morand S (2017) Complete genome sequence of Vitreoscilla filiformis (ATCC 15551), used as a cosmetic ingredient. Genome Announc 5(34):e00913–e00917.  https://doi.org/10.1128/genomeA.00913-17 CrossRefGoogle Scholar
  18. De Michele D, Sparo MD, Giacomino M, Schell CM, De Luca MM, Grenóvero S, Belderrain A, Basualdo JÁ (2007) Acción inhibitoria de la fase líquida del fango del volcan Copahue, Neuquen, Argentina sobre la microbiota de piel, fosas nasales, intestinales y vaginal/Inhibitory effect of the liquid phase of Copahue Volcano mud (Neuquen, Argentina) on skin, nostrils, intestinal and vaginal microbiota. An Hidrol Méd 2:85Google Scholar
  19. Espejo-Antúnez L, Cardero-Durán MA, Garrido-Ardila EM, Torres-Piles S, Caro-Puértolas B (2012) Clinical effectiveness of mud pack therapy in knee osteoarthritis. Rheumatology 52(4):659–668.  https://doi.org/10.1093/rheumatology/kes322 CrossRefGoogle Scholar
  20. Falkinham JO, Wall TE, Tanner JR, Tawaha K, Alali FQ, Li C, Oberlies NH (2009) Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan’s red soils. Appl Environ Microbiol 75(9):2735–2741.  https://doi.org/10.1128/AEM.00104-09 CrossRefGoogle Scholar
  21. Fioravanti A, Karagülle M, Bender T, Karagülle MZ (2017) Balneotherapy in osteoarthritis: facts, fiction and gaps in knowledge. Eur J Integr Medi 9:148–150.  https://doi.org/10.1016/j.eujim.2017.01.001 CrossRefGoogle Scholar
  22. Fish SA, Codd GA (1994) Bioactive compound production by thermophilic and thermotolerant cyanobacteria (blue-green algae). World J Microbiol Biotechnol 10(3):338–341.  https://doi.org/10.1007/BF00414875 CrossRefGoogle Scholar
  23. Ghadiri M, Chrzanowski W, Rohanizadeh R (2015) Biomedical applications of cationic clay minerals. RSC Adv 5(37):29467–29481.  https://doi.org/10.1039/C4RA16945J CrossRefGoogle Scholar
  24. Gomes C, Carretero MI, Pozo M, Maraver F, Cantista P, Armijo F, Legido JL, Teixeira F, Rautureau M, Delgado R (2013) Peloids and pelotherapy: historical evolution, classification and glossary. Appl Clay Sci 75:28–38.  https://doi.org/10.1016/j.clay.2013.02.008 CrossRefGoogle Scholar
  25. Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253.  https://doi.org/10.1038/nrmicro2537 CrossRefGoogle Scholar
  26. Guéniche A, Cathelineau AC, Bastien P, Esdaile J, Martin R, Queille Roussel C, Breton L (2008a) Vitreoscilla filiformis biomass improves seborrheic dermatitis. J Eur Acad Dermatol Venereol 22(8):1014–1015.  https://doi.org/10.1111/j.1468-3083.2007.02508.x CrossRefGoogle Scholar
  27. Guéniche A, Knaudt B, Schuck E, Volz T, Bastien P, Martin R, Röcken M, Breton L, Biedermann T (2008b) Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, double-blind, placebo-controlled clinical study. Br J Dermatol 159(6):1357–1363.  https://doi.org/10.1111/j.1365-2133.2008.08836.x CrossRefGoogle Scholar
  28. Halevy S, Sukenik S (1998) Different modalities of spa therapy for skin diseases at the Dead Sea area. Arch Dermatol 134(11):1416–1420.  https://doi.org/10.1001/archderm.134.11.1416 CrossRefGoogle Scholar
  29. Haydel SE, Remenih CM, Williams LB (2007) Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother 61(2):353–361.  https://doi.org/10.1093/jac/dkm468 CrossRefGoogle Scholar
  30. Ishizuka I (1997) Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res 36(4):245–319.  https://doi.org/10.1016/S0163-7827(97)00011-8 CrossRefGoogle Scholar
  31. Kong HH, Segre JA (2012) Skin microbiome: looking back to move forward. J Investig Dermatol 132(3):933–939.  https://doi.org/10.1038/jid.2011.417 CrossRefGoogle Scholar
  32. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, von Aulock S, Radek KA, Huang CM, Ryan AF, Gallo RL (2009) Commensal bacteria regulate TLR3-dependent inflammation following skin injury. Nat Med 15(12):1377–1382.  https://doi.org/10.1038/nm.2062 CrossRefGoogle Scholar
  33. Langan E, Griffiths C, Solbach W, Knobloch J, Zillikens D, Thaçi D (2018) The role of the microbiome in psoriasis: moving from disease description to treatment selection? Br J Dermatol 178:1020–1027.  https://doi.org/10.1111/bjd.16081 CrossRefGoogle Scholar
  34. Lee JH, Kim YG, Lee K, Kim CJ, Park DJ, Ju Y, Lee JC, Wood TK, Lee J (2016) Streptomyces-derived actinomycin D inhibits biofilm formation by Staphylococcus aureus and its hemolytic activity. Biofouling 32(1):45–56.  https://doi.org/10.1080/08927014.2015.1125888 CrossRefGoogle Scholar
  35. Ma’or Z, Henis Y, Alon Y, Orlov E, Sørensen KB, Oren A (2006) Antimicrobial properties of Dead Sea black mineral mud. Int J Dermatol 45(5):504–511.  https://doi.org/10.1111/j.1365-4632.2005.02621.x CrossRefGoogle Scholar
  36. Mahe YF, Perez MJ, Tacheau C, Fanchon C, Martin R, Rousset F, Seite S (2013) A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential toll-like receptor 2/protein kinase C, zeta transduction pathway. Clin Cosmet Investig Dermatol 6:191.  https://doi.org/10.2147/CCID.S47324 Google Scholar
  37. Marcolongo G, De Appolonia F, Venzo A, Berrie CP, Carofiglio T, Ceschi Berrini C (2006) Diacylglycerolipids isolated from a thermophile cyanobacterium from the Euganean hot springs. Nat Prod Res 20(8):766–774.  https://doi.org/10.1080/14786410500176393 CrossRefGoogle Scholar
  38. Martin H, Laborel-Préneron E, Fraysse F, Nguyen T, Schmitt AM, Redoulès D, Davrinche C (2016) Aquaphilus dolomiae extract counteracts the effects of cutaneous S. aureus secretome isolated from atopic children on CD4+ T cell activation. Pharm Biol 54(11):2782–2785.  https://doi.org/10.3109/13880209.2016.1173069 CrossRefGoogle Scholar
  39. Miller SR, Castenholz RW (2000) The evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. J Phycol 36(s3):48–48.  https://doi.org/10.1128/AEM.66.10.4222-4229.2000 CrossRefGoogle Scholar
  40. Moro I, Rascio N, La Rocca N, Di Bella M, Andreoli C (2007) Cyanobacterium aponinum, a new cyanoprokaryote from the microbial mat of Euganean Thermal Springs (Padua, Italy). Arch Hydrobiol / Suppl Algol Stud 123:1–15.  https://doi.org/10.1127/1864-1318/2007/0123-0001 Google Scholar
  41. Moro I, Rascio N, La Rocca N, Sciuto K, Albertano P, Bruno L, Andreoli C (2010) Polyphasic characterization of a thermo-tolerant filamentous cyanobacterium isolated from the Euganean thermal muds (Padova, Italy). Eur J Phycol 45(2):143–154.  https://doi.org/10.1080/09670260903564391 CrossRefGoogle Scholar
  42. Muñoz MS, Rodríguez CM, Rudnikas AG, Rizo OD, Martínez-Santos M, Ruiz-Romera E, Fagundo Castillo JR, Pérez-Gramatges A, Martínez-Villegas NV, Padilla DB, Díaz RH, González-Hernández P (2015) Physicochemical characterization, elemental speciation and hydrogeochemical modeling of river and peloid sediments used for therapeutic uses. Appl Clay Sci 104:36–47.  https://doi.org/10.1016/j.clay.2014.11.029 CrossRefGoogle Scholar
  43. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y (2012) Compartmentalized control of skin immunity by resident commensals. Science (New York, N.Y.) 337(6098):1115–1119.  https://doi.org/10.1126/science.1225152 CrossRefGoogle Scholar
  44. Nakatsuji T, Chen TH, Butcher AM, Trzoss LL, Nam SJ, Shirakawa KT, Zhou W, Oh J, Otto M, Fenical W, Gallo RL (2018) A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Science Advances 4(2):eaao4502.  https://doi.org/10.1126/sciadv.aao4502 CrossRefGoogle Scholar
  45. Obeidat M (2017) Isolation and characterization of extremely halotolerant Bacillus species from Dead Sea black mud and determination of their antimicrobial and hydrolytic activities. Afr J Microbiol Res 11(32):1303–1314.  https://doi.org/10.5897/AJMR2017.8608 CrossRefGoogle Scholar
  46. Oufdou K, Mezrioui N, Oudra B, Loudiki M, Barakate M, Sbiyyaa B (2001) Bioactive compounds from Pseudanabaena species (cyanobacteria). Microbios 106:21–29Google Scholar
  47. Ozdemir G, Ulku Karabay N, Dalay MC, Pazarbasi B (2004) Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother Res 18(9):754–757.  https://doi.org/10.1002/ptr.1541 CrossRefGoogle Scholar
  48. Paduano S, Valeriani F, Romano-Spica V, Bargellini A, Borella P, Marchesi I (2017) Microbial biodiversity of thermal water and mud in an Italian spa by metagenomics: a pilot study. Water Sci Technol Water Supply:ws2017209.  https://doi.org/10.2166/ws.2017.209
  49. Pellegatta T, Saler M, Bonfanti V, Nicoletti G, Faga A (2016) Novel perspectives on the role of the human microbiota in regenerative medicine and surgery. Biomed Rep 5(5):519–524.  https://doi.org/10.3892/br.2016.778 CrossRefGoogle Scholar
  50. Pesciaroli C, Viseras C, Aguzzi C, Rodelas B, González-López J (2016) Study of bacterial community structure and diversity during the maturation process of a therapeutic peloid. Appl Clay Sci 132:59–67.  https://doi.org/10.1016/j.clay.2016.05.015 CrossRefGoogle Scholar
  51. Poensin D, Carpentier PH, Féchoz C, Gasparini S (2003) Effects of mud pack treatment on skin microcirculation. Joint Bone Spine 70(5):367–370.  https://doi.org/10.1016/S1297-319X(03)00064-2 CrossRefGoogle Scholar
  52. Quintela A, Terroso D, Da Silva EF, Rocha F (2012) Certification and quality criteria of peloids used for therapeutic purposes. Clay Miner 47(4):441–451.  https://doi.org/10.1180/claymin.2012.047.4.04 CrossRefGoogle Scholar
  53. Roth RR, James WD (1988) Microbial ecology of the skin. Annu Rev Microbiol 42(1):441–464.  https://doi.org/10.1146/annurev.mi.42.100188.002301 CrossRefGoogle Scholar
  54. Sabaté Brescó M, Harris LG, Thompson K, Stanic B, Morgenstern M, O’Mahony L, Richards RG, Moriarty TF (2017) Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Front Microbiol 8:1401.  https://doi.org/10.3389/fmicb.2017.01401 CrossRefGoogle Scholar
  55. Salava A, Lauerma A (2014) Role of the skin microbiome in atopic dermatitis. Clin Transl Allergy 4(1):33.  https://doi.org/10.1186/2045-7022-4-33 CrossRefGoogle Scholar
  56. Sarada DV, Kumar CS, Rengasamy R (2011) Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: a novel and potent agent against drug resistant bacteria. World J Microbiol Biotechnol 27(4):779–783.  https://doi.org/10.1007/s11274-010-0516-2 CrossRefGoogle Scholar
  57. Schell CM, Sparo MD, De Luca MM, Grenóvero S, De Michele D, Giacomino M, Monasterio A, Belderrain A, Basualdo JA (2010) Actividad inhibitoria de la fase líquida del fango termal de Copahue (Neuquén, Argentina) sobre cepas de Staphylococcus aureus. An Hidrol Méd 3:21–33Google Scholar
  58. Sedláček I, Kwon SW, Švec P, Mašlanˇová I, Kýrová K, Holochová P, Černohlávková J, Busse HJ (2016) Aquitalea pelogenes sp. nov., isolated from mineral peloid. Int J Syst Evol Microbiol 66(2):962–967.  https://doi.org/10.1099/ijsem.0.000819 CrossRefGoogle Scholar
  59. Sharma S, Grewal S, Vakhlu J (2018) Phylogenetic diversity and metabolic potential of microbiome of natural healing clay from Chamliyal (J&K). Arch Microbiol:1–11.  https://doi.org/10.1007/s00203-018-1549-4
  60. Sherwani MA, Tufail S, Muzaffar AF, Yusuf N (2018) The skin microbiome and immune system: potential target for chemoprevention? Photodermatol Photoimmunol Photomedi 34:25–34.  https://doi.org/10.1111/phpp.12334 CrossRefGoogle Scholar
  61. Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25(3):73–95.  https://doi.org/10.1080/07388550500248498 CrossRefGoogle Scholar
  62. Svensson SL, Behroozian S, Xu W, Surette MG, Li L, Davies J (2017) Kisameet glacial clay: an unexpected source of bacterial diversity. mBio 8(3):e00590-17.  https://doi.org/10.1128/mBio.00590-17 CrossRefGoogle Scholar
  63. Tateo F, Ravaglioli A, Andreoli C, Bonina F, Coiro V, Degetto S, Giaretta A, Menconi Orsini A, Puglia V, Summa V (2009) The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl Clay Sci 44(1–2):83–94.  https://doi.org/10.1016/j.clay.2009.02.004 CrossRefGoogle Scholar
  64. Thomas CL, Fernández-Peñas P (2017) The microbiome and atopic eczema: more than skin deep. Australas J Dermatol 58:18–24.  https://doi.org/10.1111/ajd.12435 CrossRefGoogle Scholar
  65. Tolomio C, Ceschi Berrini C, De Appolonia F, Galzigna L, Masiero L, Moro I, Moschin E (2002) Diatoms in the termal mud of Abano Terme, Italy (Maturation period). Arch Hydrobiol Algol Stud, Supplement Volumes 105:11–27Google Scholar
  66. Tolomio C, Ceschi-Berrini C, Moschin E, Galzigna L (1999) Colonization by diatoms and antirheumatic activity of thermal mud. Cell Biochem Funct 17(1):29–33CrossRefGoogle Scholar
  67. Tolomio C, De Appolonia F, Moro I, Berrini CC (2004) Thermophilic microalgae growth on different substrates and at different temperatures in experimental tanks in Abano Terme (Italy). Arch Hydrobiol Algol Stud, Supplement Volumes 111:145–157.  https://doi.org/10.1127/1864-1318/2004/0111-0145
  68. Veniale F, Bettero A, Jobstraibizer PG, Setti M (2007) Thermal muds: perspectives of innovations. Appl Clay Sci 36(1–3):141–147.  https://doi.org/10.1016/j.clay.2006.04.013 CrossRefGoogle Scholar
  69. Wertz PW, van den Bergh B (1998) The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem Phys Lipids 91(2):85–96.  https://doi.org/10.1016/S0009-3084(97)00108-4 CrossRefGoogle Scholar
  70. Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56(5):603–618.  https://doi.org/10.1016/j.addr.2003.10.025 CrossRefGoogle Scholar
  71. Williams LB, Haydel SE, Giese RF Jr, Eberl DD (2008) Chemical and mineralogical characteristics of French green clays used for healing. Clay Clay Miner 56(4):437.  https://doi.org/10.1346/CCMN.2008.0560405 CrossRefGoogle Scholar
  72. Williams LB, Holland M, Eberl DD, Brunet T, Brunet de Courrsou L (2004) Killer clays. Natural antibacterial clay minerals. Mineral Soc Bull 139:3–8Google Scholar
  73. Yu Y, Champer J, Beynet D, Kim J, Friedman AJ (2015) The role of the cutaneous microbiome in skin cancer: lessons learned from the gut. J Drugs Dermatol 14(5):461–465.  https://doi.org/10.1016/j.jaad.2015.02.628 Google Scholar
  74. Zhang CL, Ye Q, Huang Z, Li W, Chen J, Song Z, Zhao W, Bagwell C, Inskeep WP, Ross C, Gao L, Wiegel J, Romanek CS, Shock EL, Hedlund BP (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74(20):6417–6426.  https://doi.org/10.1128/AEM.00843-08 CrossRefGoogle Scholar

Copyright information

© ISB 2018

Authors and Affiliations

  1. 1.Terme di MonticelliMonticelli TermeItaly
  2. 2.Institute of Public Health, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
  3. 3.Alta Intensità Medica, Department of Internal MedicineArcispedale Santa Maria Nuova – IRCCSReggio EmiliaItaly

Personalised recommendations