Advertisement

International Journal of Biometeorology

, Volume 62, Issue 7, pp 1325–1337 | Cite as

The effect of geographical and climatic properties on grass pollen and Phl p 5 allergen release

  • Şenol Alan
  • Aydan Acar Şahin
  • Tuğba Sarışahin
  • Serap Şahin
  • Ayşe Kaplan
  • Nur Münevver Pınar
Original Paper

Abstract

The Poaceae family, including grasses, comprises several cosmopolitan and allergenic species. The aim of this study was to determine the correlations between Poaceae pollen and Phl p 5 allergen concentrations in two cities with different geographical and climatic properties in Turkey. Pollen were collected from Burkard traps in Ankara and Zonguldak. Phl p 5 sampling was carried out between March and October in both 2015 and 2016 using a BGI900 Cascade High Volume Air Sampler (900 L/min.). The concentrations of Phl p 5 were measured by the enzyme-linked immunosorbent assay (ELISA) technique. The annual sum of Poaceae pollen (pollen index) during 2015–2016 was 5454 in Ankara and 4142 in Zonguldak. The total Phl p 5 concentration was 1309 pg/m3 in Zonguldak, whereas it was 8181 pg/m3 in Ankara over 2 years. About 90% of the allergen was found in the fraction with particulate matter (PM) > 10 μm in both cities. It was found that the main meteorological parameter which affected pollen and Phl p 5 was temperature in both stations. Rainfall was also found to be important for Zonguldak, due to its climatic and geographic properties. Lastly, we suggest that the primary wind direction, which is from the south of Zonguldak, could have a ‘drift effect’ for allergens because of the airborne pollen concentrations and the dates on which the allergen is released into the atmosphere. The wind direction may be an important factor in the distribution of allergen and pollen grains in stations, especially those with a hilly topography.

Keywords

Aeroallergen Ankara Zonguldak Turkey Phl p 5 Monitoring 

Notes

Acknowledgements

The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this study. This research was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant No: KBAG-113Z762. We appreciate Ferudun Koçer for his contributions to our study.

Supplementary material

484_2018_1536_MOESM1_ESM.docx (8 kb)
ESM 1 (DOCX 8 kb)

References

  1. Acar A, Alan Ş, Kaplan A et al (2017) General trends in atmospheric pollen concentration in the high populated city of Ankara, Turkey. Karaelmas Fen Ve Mühendis Derg 7:40–46Google Scholar
  2. Akaydin G, Erik S (2002) Flora of Ankara City. Hacet J Biol Chem 31:35–93Google Scholar
  3. Akman Y, Ketenoǧlu O (1986) The climate and vegetation of Turkey. Proc R Soc Edinb Sect B Biol Sci 89:123–134CrossRefGoogle Scholar
  4. Andersson K, Lidholm J (2003) Characteristics and immunobiology of grass pollen allergens. Int Arch Allergy Immunol 130:87–107.  https://doi.org/10.1159/000069013 CrossRefGoogle Scholar
  5. Bastl K, Kmenta M, Pessi A-M et al (2016) First comparison of symptom data with allergen content (Bet v 1 and Phl p 5 measurements) and pollen data from four European regions during 2009–2011. Sci Total Environ 548:229–235CrossRefGoogle Scholar
  6. Bıçakçı A, Çelenk S, Altunoğlu MK et al (2009) Allergenic airborne Gramineae (grass) pollen concentrations in Turkey. Asthma Allergy Immunol 7:90–99Google Scholar
  7. Bosch-Cano F, Bernard N, Sudre B, Gillet F, Thibaudon M, Richard H, Badot PM, Ruffaldi P (2011) Human exposure to allergenic pollens: a comparison between urban and rural areas. Environ Res 111:619–625CrossRefGoogle Scholar
  8. Bostanci L, Türktas I, Türkyilmaz C (1999) Sensitization to aeroallergens in Ankara, Turkey. Allergy 54:1332–1334CrossRefGoogle Scholar
  9. Buters J, Prank M, Sofiev M, Pusch G, Albertini R, Annesi-Maesano I, Antunes C, Behrendt H, Berger U, Brandao R, Celenk S, Galan C, Grewling Ł, Jackowiak B, Kennedy R, Rantio-Lehtimäki A, Reese G, Sauliene I, Smith M, Thibaudon M, Weber B, Cecchi L (2015) Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. J Allergy Clin Immunol 136:87–95.e6.  https://doi.org/10.1016/j.jaci.2015.01.049 CrossRefGoogle Scholar
  10. Buters JTM, Thibaudon M, Smith M, Kennedy R, Rantio-Lehtimäki A, Albertini R, Reese G, Weber B, Galan C, Brandao R, Antunes CM, Jäger S, Berger U, Celenk S, Grewling Ł, Jackowiak B, Sauliene I, Weichenmeier I, Pusch G, Sarioglu H, Ueffing M, Behrendt H, Prank M, Sofiev M, Cecchi L (2012) Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmos Environ 55:496–505.  https://doi.org/10.1016/j.atmosenv.2012.01.054 CrossRefGoogle Scholar
  11. Buters JTM, Weichenmeier I, Ochs S, Pusch G, Kreyling W, Boere AJF, Schober W, Behrendt H (2010) The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy 65:850–858.  https://doi.org/10.1111/j.1398-9995.2009.02286.x CrossRefGoogle Scholar
  12. Çelik G, Mungan D, Abadoğlu Ö et al (2004) Direct cost assessments in subjects with seasonal allergic rhinitis living in Ankara, Turkey. Allergy Asthma Proc 25:107–113Google Scholar
  13. Davis PH (1965) 1985. Flora of Turkey and the East Aegean Islands. Vol. 1-9. Edinb Univ Edinb Press 140:3–36Google Scholar
  14. D’Amato G, Liccardi G, Frenguelli G (2007) Thunderstorm-asthma and pollen allergy. Allergy 62:11–16.  https://doi.org/10.1111/j.1398-9995.2006.01271.x CrossRefGoogle Scholar
  15. De Linares C, Díaz de la Guardia C, Nieto Lugilde D, Alba F (2010) Airborne study of grass allergen (Lol p 1) in different-sized particles. Int Arch Allergy Immunol 152:49–57.  https://doi.org/10.1159/000260083 CrossRefGoogle Scholar
  16. De Linares C, Nieto-Lugilde D, Alba F et al (2007) Detection of airborne allergen (Ole e 1) in relation to Olea europaea pollen in S Spain. Clin Exp Allergy J Br Soc Allergy Clin Immunol 37:125–132.  https://doi.org/10.1111/j.1365-2222.2006.02620.x CrossRefGoogle Scholar
  17. Dogan H, Cabi E, Doğan M (2016) Mapping and analyzing the spatial distribution of the tribe Triticeae Dumort. (Poaceae) in Turkey. Turk J Bot 40:1–10.  https://doi.org/10.3906/bot-1604-11 Google Scholar
  18. Emberlin J, Savage M, Woodman R (1993) Annual variations in the concentrations of Betula pollen in the London area, 1961–1990. Grana 32:359–363.  https://doi.org/10.1080/00173139309428965 CrossRefGoogle Scholar
  19. Erkara IP, Cingi C, Ayranci U, Gurbuz KM, Pehlivan S, Tokur S (2009) Skin prick test reactivity in allergic rhinitis patients to airborne pollens. Environ Monit Assess 151:401–412.  https://doi.org/10.1007/s10661-008-0284-8 CrossRefGoogle Scholar
  20. Fischer S, Grote M, Fahlbusch B et al (1996) Characterization of Phl p 4, a major timothy grass (Phleum pratense) pollen allergen. J Allergy Clin Immunol 98:189–198CrossRefGoogle Scholar
  21. Flicker S, Vrtala S, Steinberger P et al (2000) A human monoclonal IgE antibody defines a highly allergenic fragment of the major timothy grass pollen allergen, Phl p 5: molecular, immunological, and structural characterization of the epitope-containing domain. J Immunol Baltim Md 1950 165:3849–3859Google Scholar
  22. García-Mozo H (2017) Poaceae pollen as the leading aeroallergen worldwide: a review. Allergy 72:1849–1858.  https://doi.org/10.1111/all.13210 CrossRefGoogle Scholar
  23. García-Mozo H, Galán C, Belmonte J et al (2009) Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agric For Meteorol 149:256–262.  https://doi.org/10.1016/j.agrformet.2008.08.013 CrossRefGoogle Scholar
  24. González Parrado Z, Fernández-González D, Camazón B, Valencia-Barrera RM, Vega-Maray AM, Asturias JA, Monsalve RI, Mandrioli P (2014) Molecular aerobiology - Plantago allergen Pla l 1 in the atmosphere. Ann Agric Environ Med AAEM 21:282–289.  https://doi.org/10.5604/1232-1966.1108592 CrossRefGoogle Scholar
  25. Güner A, Aslan S, Ekim T et al (2012) Türkiye bitkileri listesi (damarlı bitkiler). Nezahat Gökyiğit Bot Bahçesi Ve Flora Araştırmaları Derneği Yayını Istanb:47–83Google Scholar
  26. Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265.  https://doi.org/10.1111/j.1744-7348.1952.tb00904.x CrossRefGoogle Scholar
  27. Ianovici N (2015) Relation between Poaceae pollen concentrations and meteorological factors during 2000–2010 in Timisoara, Romania. Acta Agrobot 68:373–381.  https://doi.org/10.5586/aa.2015.033 CrossRefGoogle Scholar
  28. Jaggi KS, Ekramoddoullah AK, Kisil FT (1989) Allergenic fragments of ryegrass (Lolium perenne) pollen allergen Lol p IV. Int Arch Allergy Appl Immunol 89:342–348CrossRefGoogle Scholar
  29. Jochner S, Lüpke M, Laube J, Weichenmeier I, Pusch G, Traidl-Hoffmann C, Schmidt-Weber C, Buters JTM, Menzel A (2015) Seasonal variation of birch and grass pollen loads and allergen release at two sites in the German Alps. Atmos Environ 122:83–93.  https://doi.org/10.1016/j.atmosenv.2015.08.031 CrossRefGoogle Scholar
  30. Kaplan A (2004) Airborne pollen grains in Zonguldak, Turkey, 2001-2002. Acta Bot Sin 46:668–674Google Scholar
  31. Laaidi M, Laaidi K, Besancenot J-P, Thibaudon M (2003) Ragweed in France: an invasive plant and its allergenic pollen. Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol 91:195–201.  https://doi.org/10.1016/S1081-1206(10)62177-1 CrossRefGoogle Scholar
  32. Makra L, Juhász M, Borsos E, Béczi R (2004) Meteorological variables connected with airborne ragweed pollen in Southern Hungary. Int J Biometeorol 49:37–47CrossRefGoogle Scholar
  33. Mari A (2003) Skin test with a timothy grass (Phleum pratense) pollen extract vs. IgE to a timothy extract vs. IgE to rPhl p 1, rPhl p 2, nPhl p 4, rPhl p 5, rPhl p 6, rPhl p 7, rPhl p 11, and rPhl p 12: epidemiological and diagnostic data. Clin Exp Allergy J Br Soc Allergy Clin Immunol 33:43–51CrossRefGoogle Scholar
  34. Mohapatra SS, Lockey RF, Shirley S (2005) Immunobiology of grass pollen allergens. Curr Allergy Asthma Rep 5:381–387CrossRefGoogle Scholar
  35. Pablos I, Wildner S, Asam C, Wallner M, Gadermaier G (2016) Pollen allergens for molecular diagnosis. Curr Allergy Asthma Rep 16:31CrossRefGoogle Scholar
  36. Parrado ZG, Barrera RMV, Rodríguez CRF et al (2009) Alternative statistical methods for interpreting airborne Alder (Alnus glutimosa (L.) Gaertner) pollen concentrations. Int J Biometeorol 53:1–9CrossRefGoogle Scholar
  37. Peternel R, Srnec L, Čulig J, Hrga I, Hercog P (2006) Poaceae pollen in the atmosphere of Zagreb (Croatia), 2002–2005. Grana 45:130–136.  https://doi.org/10.1080/00173130600662114 CrossRefGoogle Scholar
  38. Piotrowska K, Kubik-Komar A (2012) The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland). Aerobiologia 28:467–479CrossRefGoogle Scholar
  39. Plaza MP, Alcázar P, Hernández-Ceballos MA, Galán C (2016) Mismatch in aeroallergens and airborne grass pollen concentrations. Atmos Environ 144:361–369.  https://doi.org/10.1016/j.atmosenv.2016.09.008 CrossRefGoogle Scholar
  40. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  41. Rodríguez-Rajo FJ, Jato V, González-Parrado Z, Elvira-Rendueles B, Moreno-Grau S, Vega-Maray A, Fernández-González D, Asturias JA, Suárez-Cervera M (2011) The combination of airborne pollen and allergen quantification to reliably assess the real pollinosis risk in different bioclimatic areas. Aerobiologia 27:1–12.  https://doi.org/10.1007/s10453-010-9170-2 CrossRefGoogle Scholar
  42. Şen Z (2018) Crossing trend analysis methodology and application for Turkish rainfall records. Theor Appl Climatol 131:285–293CrossRefGoogle Scholar
  43. Sin BA, Inceoglu O, Mungan D, Çelik G, Kaplan A, Misirligil Z (2001) Is it important to perform pollen skin prick tests in the season? Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol 86:382–386.  https://doi.org/10.1016/S1081-1206(10)62482-9 CrossRefGoogle Scholar
  44. Soreng RJ, Peterson PM, Romaschenko K et al (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol 53:117–137.  https://doi.org/10.1111/jse.12150 CrossRefGoogle Scholar
  45. Stach A, Smith M, Baena JP, Emberlin J (2008) Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environ Exp Bot 62:323–332CrossRefGoogle Scholar
  46. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077.  https://doi.org/10.1175/BAMS-D-14-00110.1 CrossRefGoogle Scholar
  47. Suphioglu C (1998) Thunderstorm asthma due to grass pollen. Int Arch Allergy Immunol 116:253–260CrossRefGoogle Scholar
  48. Weber RW (2004) Cross-reactivity of pollen allergens. Curr Allergy Asthma Rep 4:401–408.  https://doi.org/10.1007/s11882-004-0091-4 CrossRefGoogle Scholar

Copyright information

© ISB 2018

Authors and Affiliations

  1. 1.Faculty of Arts and Sciences, Department of BiologyBülent Ecevit UniversityZonguldakTurkey
  2. 2.Faculty of Science, Department of BiologyAnkara UniversityAnkaraTurkey

Personalised recommendations