Skip to main content
Log in

Pan European Phenological database (PEP725): a single point of access for European data

  • Short Communication
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The Pan European Phenology (PEP) project is a European infrastructure to promote and facilitate phenological research, education, and environmental monitoring. The main objective is to maintain and develop a Pan European Phenological database (PEP725) with an open, unrestricted data access for science and education. PEP725 is the successor of the database developed through the COST action 725 “Establishing a European phenological data platform for climatological applications” working as a single access point for European-wide plant phenological data. So far, 32 European meteorological services and project partners from across Europe have joined and supplied data collected by volunteers from 1868 to the present for the PEP725 database. Most of the partners actively provide data on a regular basis. The database presently holds almost 12 million records, about 46 growing stages and 265 plant species (including cultivars), and can be accessed via http://www.pep725.eu/. Users of the PEP725 database have studied a diversity of topics ranging from climate change impact, plant physiological question, phenological modeling, and remote sensing of vegetation to ecosystem productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig 2

References

  • Basler D (2016) Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric For Meteorol 217:10–21

    Article  Google Scholar 

  • Bussel LGJ, Stehfest E, Siebert S, Müller C, Ewert F (2015) Simulation of the phenological development of wheat and maize at the global scale. Glob Ecol Biogeogr 24(9):1018–1029

    Article  Google Scholar 

  • Chen M, Melaas EK, Gray JM, Friedl MA, Richardson AD (2016) A new seasonal-deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and water cycling under future climate scenarios. Glob Chang Biol 22(11):3675–3688

    Article  Google Scholar 

  • Cook BI, Wolkovich EM, Davies TJ, Ault TR, Betancourt JL, Allen JM, Bolmgren K, Cleland EE, Crimmins TM, Kraft NJ, Lancaster LT (2012) Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15(8):1283–1294

    Article  Google Scholar 

  • Crabbe RA, Dash J, Rodriguez-Galiano VF, Janous D, Pavelka M, Marek MV (2016) Extreme warm temperatures alter forest phenology and productivity in Europe. Sci Total Environ 563:486–495

    Article  CAS  Google Scholar 

  • Delpierre N, Guillemot J, Dufrêne E, Cecchini S, Nicolas M (2017) Tree phenological ranks repeat from year to year and correlate with growth in temperate deciduous forests. Agric For Meteorol 234:1–10

    Article  Google Scholar 

  • Dierenbach J, Badeck F-W, Schaber J (2013) The plant phenological online database (PPODB): an online database for long-term phenological data. Int J Biometeorol 57:805–812

    Article  Google Scholar 

  • Demaree GR, Rutishauser T (2011) From “periodical observations” to “anthochronology” and “phenology”—the scienctific debate between Adolphe Quetelet and Charles Morren on the origin of the word “phenology”. Int J Biometeorol 55:753–761

    Article  Google Scholar 

  • Duputié A, Rutschmann A, Ronce O, Chuine I (2015) Phenological plasticity will not help all species adapt to climate change. Glob Chang Biol 21(8):3062–3073

    Article  Google Scholar 

  • Fitter AH, Fitter RSR, Harris ITB, Williamson MH (1995) Relationship between 1st flowering date and temperature in the flora of a locality in Central England. Funct Ecol 9:55–60

    Article  Google Scholar 

  • Fu YH, Piao S, Op de Beeck M, Cong N, Zhao H, Zhang Y, Menzel A, Janssens IA (2014a) Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob Ecol Biogeogr 23:1255–1263

    Article  Google Scholar 

  • Fu YS, Campioli M, Vitasse Y, De Boeck HJ, Van den Berge J, Abdelgawad H, Asard H, Piao S, Deckmyn G, Janssens IA (2014b) Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc Natl Acad Sci U S A 111(20):7355–7360

    Article  CAS  Google Scholar 

  • Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y (2015a) Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107

    Article  CAS  Google Scholar 

  • Fu YH, Piao S, Vitasse Y, Zhao H, De Boeck HJ, Liu Q, Yang H, Weber U, Hänninen H, Janssens IA (2015b) Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Glob Chang Biol 21(7):2687–2697

    Article  Google Scholar 

  • Fraga H, García de Cortázar Atauri I, Malheiro AC, Santos JA (2016) Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob Chang Biol 22(11):3774–3788

    Article  Google Scholar 

  • Gonsamo A, Chen JM (2016) Circumpolar vegetation dynamics product for global change study. Remote Sens Environ 182:13–26

    Article  Google Scholar 

  • Guan BT (2014) Ensemble empirical mode decomposition for analyzing phenological responses to warming. Agric For Meteorol 194:1–7

    Article  Google Scholar 

  • Hamunyela E, Verbesselt J, Roerink G, Herold M (2013) Trends in spring phenology of western European deciduous forests. Remote Sens 5(12):6159–6179

    Article  Google Scholar 

  • Jochner S, Sparks TH, Laube J, Menzel A (2016) Can we detect a nonlinear response to temperature in European plant phenology? Int J Biometeorol 60:1551–1561

    Article  Google Scholar 

  • Jurkovic A, Hubner T, Koch E, Lipa W, Scheifinger H, Ungersbuck M, Zach-Hermann S (2013) The Pan European Phenological database PEP725: data content and quality. EUMETNET 9th Data management Workshop, 5-8 November. El Escorial, Spain

    Google Scholar 

  • Koch E, Bruns E, Chmielewski FM, Defila C, Lipa W, Menzel A (2009) Guidelines for plant phenological observations. WMO/TD No. 1484. World Meteorological Organization, Geneva

    Google Scholar 

  • Lapenis A, Henry H, Vuille M, Mower J (2014) Climatic factors controlling plant sensitivity to warming. Clim Chang 122:723–734

    Article  Google Scholar 

  • Linnaeus C (1751) Philosophia Botanica. (English translation by Stephen Freer). Oxford University Press, Stockholm, Amsterdam

  • Linnaeus C, Bark H (1753) Vernatio arborum. Uppsala

  • Martínez-Lüscher J, Kizildeniz T, Vučetić V, Dai Z, Luedeling E, van Leeuwen C, Gomès E, Pascual I, Irigoyen JJ, Morales F Delrot S (2016) Sensitivity of grapevine phenology to water availability, temperature and Co2 concentration. Front Environ Sci 4:48. https://doi.org/10.3389/fenvs.2016.00048

  • Meier U (1997) BBCH-monograph: growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag, Berlin

    Google Scholar 

  • Mellert KH, Lenoir J, Winter S, Kölling C, Čarni A, Dorado-Liñán I, Gégout JC, Göttlein A, Hornstein D, Jantsch M, Juvan N (2017) Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution. Eur J For Res 1–14. https://doi.org/10.1007/s10342-017-1092-x

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  • Menzel A, Sparks T, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Olsson C, Jönsson AM (2014) Process based models not always better than empirical models for simulating budburst of Norway spruce and birch in Europe. Glob Chang Biol 20(11):3492–3507

    Article  Google Scholar 

  • Nekovář J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski FE (2008) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  • Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q, Janssens IA, Vicca S, Zeng Z, Jeong SJ, Li Y (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun 6:6911. https://doi.org/10.1038/ncomms7911

    Article  CAS  Google Scholar 

  • Puppi G (2007) Origin and development of phenology as a science. Ital J Agron 3:24–29

    Google Scholar 

  • Rodriguez-Galiano VF, Dash J, Atkinson PM (2015) Intercomparison of satellite sensor land surface phenology and ground phenology in Europe. Geophys Res Lett 42:2253–2260

    Article  Google Scholar 

  • Sakalli A, Simpson D (2012) Towards the use of dynamic growing seasons in a chemical transport model. Biogeosciences 9(12):5161–5179

    Article  Google Scholar 

  • Scheifinger H, Templ B (2016) Is citizen science the recipe for the survival of paper-based phenological networks in Europe? Bioscience 66:533–534

    Article  Google Scholar 

  • Schwartz MD (1998) Green-wave phenology. Nature 394:839–840

    Article  CAS  Google Scholar 

  • Sobrino JA, Julien Y, Sòria G (2013) Phenology estimation from Meteosat second generation data. IEEE J Sel Topics Appl Earth Observ Remote Sens 6:1653–1659

    Article  Google Scholar 

  • Tang J, Körner C, Muraoka H, Piao S, Shen M, Thackeray SJ, Yang X (2016) Emerging opportunities and challenges in phenology: a review. Ecosphere 7:e01436

    Article  Google Scholar 

  • Verger A, Filella I, Baret F, Peñuelas J (2016) Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sens Environ 178:1–14

    Article  Google Scholar 

  • Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J For Res 132:1–8

    Article  Google Scholar 

  • Wang T, Ottlé C, Peng S, Janssens IA, Lin X, Poulter B, Yue C, Ciais P (2014) The influence of local spring temperature variance on temperature sensitivity of spring phenology. Glob Chang Biol 20:1473–1480

    Article  Google Scholar 

  • Wang C, Tang Y, Chen J (2016) Plant phenological synchrony increases under rapid within-spring warming. Sci Rep 6:25460. https://doi.org/10.1038/srep25460

  • Wang H, Rutishauser T, Tao Z, Zhong S, Ge Q, Dai J (2017) Impacts of global warming on phenology of spring leaf unfolding remain stable in the long run. Int J Biometeorol 61:287–292

    Article  Google Scholar 

  • Zust A, Susnik A, Habic B (2006) Data quality control procedures within the common European phenological data platform COST 725. Proceedings of the EMS-Sixth European Conference on Applied Climatology ECAC 2006, 4–8 September, Ljubljana, Slovenia

Download references

Acknowledgements

We thank the Zentralanstalt für Meteorologie und Geodynamik (ZAMG, Austria) for providing the infrastructure to store the growing number of data from Europe. Special thanks go to the Austrian Federal Ministry of Science, Research and Economy and to EUMETNET, and to all the institutes and scientists who provided data to the PEP725 database. Finally, we would like to emphasize our gratefulness to those data contributors who did not participate as authors in the writing of this manuscript: I. Chuine (French National Centre for Scientific Research, France), A. Donnelly (University of Wisconsin-Milwaukee, USA), G. Demaree (Royal Meteorological Institute of Belgium, Belgium), R. Gehrig (MeteoSwiss, Switzerland), O. Langvall (Swedish National Phenology Network, Sweden), K-K. Malgorzata (Institute of Meteorology and Water Management, Poland), E. Mateescu (National Meteorological Administration, Romania), G. dal Monte (Royal Meteorological Institute of Belgium, Italy), A. NiBhroin (Met Éireann, Ireland), T. Popovic (Institute of Hydrometeorology and Seismology of Montenegro), Z. Snopkova (Slovak Hydrometeorological Institute), S. Stevkova (Hydrometeorological Service of Republic of Macedonia), E. Vincze (Hungarian Meteorological Service), A. van Vliet (Wageningen University, The Netherlands), F.-E. Wielgolaski (The Norwegian Meteorological Institute, Norway).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helfried Scheifinger.

Electronic supplementary material

ESM 1

(PDF 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Templ, B., Koch, E., Bolmgren, K. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int J Biometeorol 62, 1109–1113 (2018). https://doi.org/10.1007/s00484-018-1512-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-018-1512-8

Keywords

Navigation