Advertisement

Prediction of annual dengue incidence by hydro-climatic extremes for southern Taiwan

  • Hsiang-Yu Yuan
  • Tzai-Hung Wen
  • Yi-Hung Kung
  • Hsiao-Hui Tsou
  • Chun-Hong Chen
  • Li-Wei Chen
  • Pei-Sheng LinEmail author
Original Paper

Abstract

Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world. An increase in the incidence of dengue is commonly thought to be a consequence of variability of weather conditions. Taiwan, which straddles the Tropic of Cancer, is an excellent place to study the relationship between weather conditions and dengue fever cases since the island forms an isolated geographic environment. Therefore, clarifying the association between extreme weather conditions and annual dengue incidence is one of important issues for epidemic early warning. In this paper, we develop a Poisson regression model with extreme weather parameters for prediction of annual dengue incidence. A leave-one-out method is used to evaluate the performance of predicting dengue incidence. Our results indicate that dengue transmission has a positive relationship with the minimum temperature predictors during the early summer while a negative relationship with all the maximum 24-h rainfall predictors during the early epidemic phase of dengue outbreaks. Our findings provide a better understanding of the relationships between extreme weather and annual trends in dengue cases in Taiwan and it could have important implications for dengue forecasts in surrounding areas with similar meteorological conditions.

Keywords

Dengue outbreak Dengue prediction Extreme weather Minimum temperature Maximum rainfall 

References

  1. Adams B, Holmes EC, Zhang C, Mammen MP, Nimmannitya S, Kalayanarooj S, Boots M (2006) Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok. Proc Natl Acad Sci 103(38):14234–14239CrossRefGoogle Scholar
  2. Aragão HB (1939) Mosquitoes and yellow fever virus. Mem Inst Oswaldo Cruz 34(4):565–581Google Scholar
  3. Beebe MW, Cooper RD, Mottram P, Sweeney AW (2009) Australia’s dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis 3(5):e429CrossRefGoogle Scholar
  4. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507CrossRefGoogle Scholar
  5. Chien LC, Yu HL (2014) Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence. Environ Int 73:46–56CrossRefGoogle Scholar
  6. Hales S, De Wet N, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360(9336):830–834CrossRefGoogle Scholar
  7. Hii YL, Zhu H, Ng N, Ng LC, Rocklöv J (2012) Forecast of dengue incidence using temperature and rainfall. PLoS Negl Trop Dis 6(11):e1908CrossRefGoogle Scholar
  8. Hoeck PA, Ramberg FB, Merrill SA, Moll C, Hagedorn HH (2003) Population and parity levels of Aedes aegypti collected in Tucson. J Vector Ecol 28(Tempelis 1975):65–73Google Scholar
  9. Hurvich CM, Tsai CL (1991) Bias of the corrected AIC criterion for under-fitted regression and time series models. Biometrika 78(3):499–509.  https://doi.org/10.1093/biomet/78.3.499 Google Scholar
  10. Khalid B, Ghaffar A (2015a) Dengue transmission based on urban environmental gradients in different cities of Pakistan. Int J Biometeorol 59(3):267–283CrossRefGoogle Scholar
  11. Khalid B, Ghaffar A (2015b) Environmental risk factors and hotspot analysis of dengue distribution in Pakistan. Int J Biometeorol 59(11):1721–1746CrossRefGoogle Scholar
  12. Kutsuna S, Kato Y, Moi ML, Kotaki A, Ota M, Shinohara K, Kobayashi T, Yamamoto K, Fujiya Y, Mawatari M, Sato T, Kunimatsu J, Takeshita N, Hayakawa K, Kanagawa S, Takasaki T, Ohmagari N (2015) Autochthonous dengue fever, Tokyo, Japan, 2014. Emerg Infect Dis 21(3):517–520CrossRefGoogle Scholar
  13. Lai S, Huang Z, Zhou H, Anders KL, Perkins TA, Yin W, Li Y, Mu D, Chen Q, Zhang Z, Qiu Y, Wang L, Zhang H, Zeng L, Ren X, Geng M, Li Z, Tatem AJ, Hay SI, Yu H (2015) The changing epidemiology of dengue in China, 1990-2014: a descriptive analysis of 25 years of nationwide surveillance data. BMC Med 13:100CrossRefGoogle Scholar
  14. Morales I, Salje H, Saha S, Gurley ES (2016) Seasonal distribution and climatic correlates of dengue disease in Dhaka, Bangladesh. Am J Trop Med Hyg 94(6):1359–1361CrossRefGoogle Scholar
  15. Morin CW, Comrie AC, Ernst K (2013) Climate and dengue transmission: evidence and implications. Environ Health Perspect 121(11–12):1264–1272CrossRefGoogle Scholar
  16. Mutheneni SR, Morse AP, Caminade C, Upadhyayula SM (2017) Dengue burden in India: recent trends and importance of climatic parameters. Emerg Microbes Infect 6(8):e70Google Scholar
  17. Nagao Y, Koelle K (2008) Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc Natl Acad Sci 105(6):2238–2243CrossRefGoogle Scholar
  18. Seidahmed OME, Eltahir EAB (2016) A sequence of flushing and drying of breeding habitats of Aedes aegypti (L.) prior to the low dengue season in Singapore. PLoS Negl Trop Dis 10(7):e0004842CrossRefGoogle Scholar
  19. Shepard DS, Undurraga EA, Halasa YA (2013) Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis 7(2):e2055CrossRefGoogle Scholar
  20. Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR (2016) Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124(9):1369–1375.  https://doi.org/10.1289/ehp.1509981 CrossRefGoogle Scholar
  21. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Ser B 36(2):111–147Google Scholar
  22. Trippa L, Waldron L, Huttenhower C, Parmigiani G (2015) Bayesian nonparametric cross-study validation of prediction methods. Ann Appl Stat 9(1):402–428CrossRefGoogle Scholar
  23. Wang SF, Chang K, Loh EW, Wang WH, Tseng SP, Lu PL, Chen YH, Chen YMA (2016) Consecutive large dengue outbreaks in Taiwan in 2014–2015. Emerg Microbes Infect 5(12):e123CrossRefGoogle Scholar
  24. Wearing HJ, Rohani P (2006) Ecological and immunological determinants of dengue epidemics. Proc Natl Acad Sci 103(31):11802–11807CrossRefGoogle Scholar
  25. World Health Organization (2009) Dengue guidelines for diagnosis, treatment, prevention and control: new editionGoogle Scholar
  26. World Health Organization (2017) Dengue and dengue haemorrhagic fever WHO fact sheet N°117Google Scholar
  27. Xu L, Stige LC, Chan KS, Zhou J, Yang J, Sang S, Wang M, Yang Z, Yan Z, Jiang T, Lu L, Yue Y, Liu X, Lin H, Xu J, Liu Q, Stenseth NS (2017) Climate variation drives dengue dynamics. Proc Natl Acad Sci 114(1):113–118CrossRefGoogle Scholar
  28. Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV (2009a) Assessing the effects of temperature on dengue transmission. Epidemiol Infect 137(08):1179–1187CrossRefGoogle Scholar
  29. Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV (2009b) Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137(08):1188–1202CrossRefGoogle Scholar
  30. Yu HL, Lee CH, Chien LC (2016) A spatiotemporal dengue fever early warning model accounting for nonlinear associations with hydrological factors: a Bayesian maximum entropy approach. Stoch Env Res Risk A 30(8):2127–2141CrossRefGoogle Scholar

Copyright information

© ISB 2019

Authors and Affiliations

  1. 1.Department of Biomedical SciencesCity University of Hong KongKowloon TongHong Kong
  2. 2.Department of GeographyNational Taiwan UniversityTaipei CityTaiwan
  3. 3.National Mosquito-Borne Disease Control Research CenterNational Health Research InstitutesZhunaTaiwan
  4. 4.Institute of Population Health Sciences, National Health Research InstitutesZhunaTaiwan
  5. 5.Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesZhunaTaiwan

Personalised recommendations